
International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Special Issue - NGEPT - 2019

35 | NGEPT2019009 DOI : 10.18231/2454-9150.2019.0578 © 2019, IJREAM All Rights Reserved.

JAVA Code Analyzer Tool to Destroy Liability

and Provide Remedy for Programmers
1
Dr. Chandramouli H,

2
Prabhuraj M Patil,

3
Madhu R,

4
B Vishwanatha

1
Professor,

2,3,4
Assistant Professor, Dept. of CSE, East Point College of Engineering & Technology,

Bangaluru, India, hcmcool123@gmail.com, pmetipatil@gmail.com, gowda.madhur@gmail.com,

vishwanathb807@gmail.com

*
Project funded by the Government of Karnataka under VGST Scheme (2014-2019)

Abstract – Programming helplessness is a flaw that can be exploited to gain access to the code making the product

highly unstable. To make the product safe, liabilities should be recognized and remedied. This tool is used to assess the

severity of the condition and the finding remedy for the developer which helps to avoid the liabilities along with solution

for the liability.

Keywords - Degree of Liability Tool, Common Weakness Enumeration (CWE), Liability Detection, Liability Remedy, ISM, XML

I. INTRODUCTION

The liability has threatened the security of the software at

various stages in different stages, involuntarily because of

mistakes made by developers or will full infringements. The

design and implementation of Software poor are the main

causes of most security liabilities [1]. Threats issues can

also arise from Web sites and Web applications (webapps).

Needs to be protected against all kinds of threats and other

active data centers used to host websites and related systems

[2]. It is doubtful that the current techniques of safety

information will be able to protect critical software systems

unless they make security an integral part of the program.

Java language has emerged choose to build systems based

on large and complex web, partly because of the safety

language in which direct memory access and eliminate

problems such as buffer overruns refused advantages.

However, in spite of these features, it is possible to make

logical programming errors that lead to liabilities such as

SQL injection and cross-site scripting attacks [3]. A simple

programming error could be left vulnerable Web

application for accessing unauthorized data and

unauthorized updates, or delete data, and fall leading to

denial of service attacks applications [4]. Efforts should be

made during the design and implementation of the program

to make safe and protect software against it. This document

discusses the liabilities that are injected into the Java

programs during the coding phase and describes tool

developed to detect liabilities and warn the developer for

these.

II. PRESENT STATE OF RESEARCH

Because of the extended episodes data robbery, security

programmings are increasingly causing connection after

consideration of all the normal shortcomings and

weaknesses. It has developed a group of helplessness

discover the source code and operational framework for

programming and administration deficiencies. Various tools

are available in the market Java code static analysis. Lists

are:

Checkstyle: This plug- in works like the check rules. These

rules tells you where you hurt your code similar to compiler,

but also produce .class file, it generates alarm. A c injury

reported. Check determines which controls were validated

against the code and with the severity [4].

FindBugs: It is an open source from University of

Maryland [5].

IntelliJ IDEA: Cross-platform Java IE with own set of

several hundred code inspections available for analysing

code on-the-fly in the editor and bulk analysis of the whole

project.

JArchitect: Simplifies managing code by comparing

different version of the code. This supports version control

[6].

PMD: It is static code analyzer. It uses rule –set that define

when a piece of source is erroneous [7]. This software

allows checking the type of liability and how much

percentage uncertainty present in program. This also

provides solution for the type of error occurred.

III. LIABILITIES CHECKED FOR AND

SOLUTION

A. LIABILITIES DEFINED FOR THE FLAWS

Following liabilities are defined in this tool.

 1. Argument Injection or Modification

National Conference on New Generation Emerging Trend Paradigm - 2019,

East Point College of Engineering & Technology, Bangalore, May, 2019

36 | NGEPT2019009 DOI : 10.18231/2454-9150.2019.0578 © 2019, IJREAM All Rights Reserved.

 2. XML Injection

 3. Improper neutralization

 4. Information Exposure through Debug

 Information

 5. Password related flaws

 i. Empty Password in Configuration File

 ii. Password in Configuration File

 iii. Unverified Password Change

 iv. Use of Hard-coded Password

 6. Unsafe Reflection

 7. Use of Obsolete Functions

 8. Missing Release of resource after effective

 Lifetime

 9. Relative Path Traversal

 10. Improper Neutralization of Script-Related

 HTML Tags in a Web Page (Basic XSS)

 11. Improper Neutralization of Special Elements

 used in a Command

 12. Improper Output Neutralization for Logs

 13. Information Exposure Through Sent Data

 14. Cleartext Storage of Sensitive Information in

 Executable

 15. Cross-Site Request Forgery (CSRF)

B. VARIOUS LIABILITIES DESCRIPTION AND

SOLUTION

1. Argument Injection or Modification [8]:

Description:

Here program accepts filename as command line argument,

if program runs with root privileges; attacker may pass his

own string to get the information he need [8].

Solution:

 do input validation

 use white list of acceptable inputs

 input should be decoded

2. XML Injection [9]:

Description:

The product does not legitimately exceptional components

that are utilized as a part of XML, permitting assailants alter

the substance of the XML before it is handled by an end

framework [9].

Solution:

 do input validation specific to XML

 use white list of acceptable inputs

3. Improper Neutralization [10]:

Description:

The item gets commitment from an upstream portion, in any

case it doesn't slaughter or wrongly executes uncommon

segments that could be deciphered as flight, meta, or control

character progressions when they are sent to a downstream

section[10].

Solution:

 do input validation

 use white list of acceptable inputs

 input should be decoded

4. Information Exposure through Debug Information

[11]:

Description:

The application contains researching code that can open

sensitive information to untrusted parties [11].

Solution:

 Do not leave debug statements that are executable via

source code

 Be careful when interfacing with a compartment outside

of the safe area

5. Password related flaws [12]:

 i. Empty Password in Configuration File

Description:

Using an empty string as a password is insecure [12].

Solution:

 Use longer passwords

 Should not use empty string as password

ii. Password in Configuration File [13]:

Description:

The software stores a password in a configuration file that

might be accessible to actors who do not know the password

[13].

 Solution:

 during design phase

 Avoid storing passwords in easily accessible locations.

 store cryptographic hashes of passwords

 iii. Unverified Password Change [14]:

Description:

When setting a new password for a user, the product does

not require knowledge of the original password, or using

another form of authentication [14].

Solution:

 When prompting for a password change, force the user to

provide the original password in addition to the new

password.

 if using forgot password then make sure the current user

not allowed to change identity.

 iv. Use of Hard-coded Password [15]:

Description:

The software contains a hard-coded password, which it uses

for its own inbound authentication or for outbound

communication to external components [15].

Solution:

 For outbound authentication: store passwords outside of

the code in a strongly-protected, encrypted

configuration file or database that is protected from

access by all outsiders.

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Special Issue - NGEPT - 2019

37 | NGEPT2019009 DOI : 10.18231/2454-9150.2019.0578 © 2019, IJREAM All Rights Reserved.

 For inbound authentication: Rather than hard-code a

default username and password for first time logins,

utilize a "first login" mode that requires the user to

enter a unique strong password.

 Perform access control checks and limit which entities

can access the feature that requires the hard-coded

password.

 For inbound authentication: apply strong one-way hashes

to your passwords and store those hashes in a

configuration file or database with appropriate access

control.

6. Unsafe Reflection [16]:

Description:

The application uses external input with reflection to select

which classes or code to use, but it does not sufficiently

prevent the input from selecting improper classes or code

[16].

Solution:

 Refractor your code to abstain from utilizing reflection

 Do not utilize client controlled inputs to choose and stack

classes or code.

 Apply strict information acceptance by utilizing white

lists or circuitous determination to guarantee that the

client is just selecting permissible classes or code.

7. Use of Obsolete Function [17]:

Description:

The code uses deprecated or obsolete functions, which

suggests that the code has not been actively reviewed or

maintained [17].

Solution:

 Refer to the documentation

 Consider truly the security ramifications of utilizing an

outdated capacity. Consider utilizing interchange

capacities.

8. Missing Release of resource after effective Lifetime

[18]:

Description:

The product does not discharge an asset after its viable

lifetime has finished, i.e., after the asset is no more required

[18].

Solution:

 Utilize a dialect that does not permit this

short coming to happen

 liberating all assets you allot

 Use asset restricting settings by environment

9. Relative Path Traversal [20]:

Description: The software uses external input to construct a

pathname that should be within a restricted directory, but it

does not properly neutralize sequences such as ".." that

can resolve to a location that is outside of that directory[20].

Solution:

 White list inputs

 Inputs should be decoded

10. Improper Neutralization of Script Related HTML

Tags in a Web Page (Basic XSS) [21]:

Description: The software receives input from an upstream

component, but it does

not neutralize or incorrectly neutralizes special characters

such as "<", ">", and "&" that could be interpreted as web-

scripting elements when they are sent to a downstream

component that processes web pages [21].

Solution:

 Check each input parameter

 Use and specify an output encoding that can be handled

by the downstream component

11. Improper Neutralization of Special Elements used in

a Command [22]:

Description: The software constructs all or part of a

command using externally-influenced input from an

upstream component, but it does not neutralize

or incorrectly neutralizes special elements that could modify

the intended command when it is sent to a downstream

component [22].

Solution:

 Run time policy enforcement may be used in a white-list

fashion

 Assign permissions to the software system that prevents

the user from accessing/opening privileged files.

12. Improper Output Neutralization for Logs [23]:

Description: The software does

not neutralize or incorrectly neutralizes output that is

written to logs [23].

Solution:

 do input validation

 use white list of acceptable inputs

13. Information Exposure through Sent Data [24]:

Description: The accidental exposure of sensitive

information through sent data refers to the transmission of

data which are either sensitive in and of itself or useful in

the further exploitation of the system through standard data

channels [24].

Solution:

 Specify which data in the software should be regarded as

sensitive.

 Ensure that any possibly sensitive data specified in the

requirements is verified

14. Cleartext Storage of Sensitive Information in

Executable [25]:

Description: The application stores sensitive information

in Cleartext in an executable [25].

National Conference on New Generation Emerging Trend Paradigm - 2019,

East Point College of Engineering & Technology, Bangalore, May, 2019

38 | NGEPT2019009 DOI : 10.18231/2454-9150.2019.0578 © 2019, IJREAM All Rights Reserved.

Solution:

 key management mechanism

 updating proprietary data

15. Cross-Site Request Forgery (CSRF) [26]:

Description: The web application does not, or cannot,

sufficiently verify whether a well-formed, valid, consistent

request was intentionally provided by the user who

submitted the request [26].

Solution:

 Use a vetted library or framework

 Ensure application is free of cross-site scripting issues

 Generate a unique nonce for each form

 Identify especially dangerous operations

 Use the "double-submitted cookie" method

 Do not use the GET method

 Check the HTTP Referrer header

IV. RESULTS AND DISCUSSIONS

A. DEGREE OF LIABILITY IN A PROGRAM

Each of the weaknesses discussed in this paper has been

assigned a severity level defined in CWE. In this paper we

define a metric for calculating the Degree of Uncertainty

(referred to as ISM).

EQUATION 1: DEGREE OF LIABILITY

Where,

ISM - stands for the Degree of Liability,

i - is the type of liability where i=1,2,....m

Wi - is the Severity of Liability in the software

Ni - is the frequency of occurrence of liability i.

B. WORKING OF TOOL

The tool takes as input any Java program and scans to

identify the liabilities. If any liability is detected then it

displays warning message and suggests steps for its

mitigation.

Fig. 1: Working Procedure

The steps followed are:

1. Select the input Java program

2. Select from the drop down list all types of liabilities

intended to be detected

3. As shown figure As shown in Figure 1, for a Java

program given as an input to the Tool, it displays type of

liability found and the place of its occurrence. It also gives

the Degree of Severity in the input program.

C. RESULTS AND TABLES

Affects of Availability: This will cause undesired behavior

and system crash may happen and it may enter infinite

loops.

Table 1: Severity of Liabilities

Type of Liability Severity

Argument Injection or Modification 21

XML Injection 6

Improper neutralization 11

Information Exposure through Debug Info 3

Empty Password in Configuration File 4

Password in Configuration File 4

Unverified Password Change 2

Use of Hard-coded Password 6

Unsafe Reflection 1

Use of Obsolete Functions 2

Missing Release of resource after effective Lifetime 8

Relative Path Traversal 2

Improper Neutralization of Script-Related HTML Tags in

a Web Page (Basic XSS)
7

Improper Neutralization of Special Elements used in a

Command
2

Improper Output Neutralization for Logs 4

Information Exposure Through Sent Data 2

Cleartext Storage of Sensitive Information in Executable 2

Cross-Site Request Forgery (CSRF) 7

V. CONCLUSION

The tool described here detects liabilities that exist in the

code, calculates the degree of Severity of the input Java

program and gives the remedy for that error. The efficiency

of the tool is designed to use for calculating the degree of

uncertainty in two categories of programs: one written by

experienced Java developers and the other students.

REFERENCES

Books:

[1] G. Mcgraw, Software Security: Building Security In,

Addison Wesley, 2006.

[2] A. K. Talukder, M. Chaitanya, Architecting Secure

Software Systems, Auerbach Publications, 2009.

Journal Papers and Website Links:

[3] R. Priyadarshini, A. Basu and S. Sushma, “SecCheck: A

Tool to Detect Vulnerabilities in Java Code,” International

Conference on On-Demand Computing, ICDOC Bangalore,

Nov 15-16, 2012.

m

ISM=∑ Wi*Ni

I=1

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Special Issue - NGEPT - 2019

39 | NGEPT2019009 DOI : 10.18231/2454-9150.2019.0578 © 2019, IJREAM All Rights Reserved.

 [4] N. Ghosh and A. Basu, “WebCheck: A Tool to Detect

Weaknesses in Java Web Applications,” International

Conference on Information and Communication

Engineering ICICE Bangalore, June 28-29, 2013.

[5] findbugs.sourceforge.net/findbugs2.html

[6] https://en.wikipedia.org/wiki/IntelliJ_IDEA

[7] https://en.wikipedia.org/wiki/PMD_(Software)

[8] Argument Injection:

https://cwe.mitre.org/data/definitions/88.html

[9] XML Injection:

https://cwe.mitre.org/data/definitions/91.html

[10] Improper Filtering of Escape, Control, or Meta

Successions: http://cwe.mitre.org/data/definitions/150.html

[11] Information Exposure through Debug Information:

https://cwe.mitre.org/data/definitions/215.html

[12] Keeping Password Empty in Configuration File:

https://cwe.mitre.org/data/definitions/258.html

[13] Config File containing Password:

https://cwe.mitre.org/data/definitions/260.html

[14] Untested Password Change:

https://cwe.mitre.org/data/definitions/620.html

[15] Use of Hard-coded Password:

https://cwe.mitre.org/data/definitions/259.html

[16] Unsafe Reflection:

https://cwe.mitre.org/data/definitions/470.html

[17] Use of Obsolete function:

https://cwe.mitre.org/data/definitions/477.html

[18] Use of resource after its lifetime:

https://cwe.mitre.org/data/definitions/772.html

[19] Improper Input Validation:

http://cwe.mitre.org/data/definitions/20.html

[20] Relative Xpath traversal:

https://cwe.mitre.org/data/definitions/23.html

[21] Improper Neutralization of Script-Related HTML Tags

in a Web Page (Basic XSS):

 https://cwe.mitre.org/data/definitions/80.html

[22] Improper Neutralization in command:

https://cwe.mitre.org/data/definitions/77.html

[23] Improper Output Neutralization for Logs:

https://cwe.mitre.org/data/definitions/117.html

[24] Information Exposure through Sent Data:

https://cwe.mitre.org/data/definitions/201.html

[25] Cleartext Storage of Sensitive Information in

Executable: https://cwe.mitre.org/data/definitions/318.html

[26] Cross-Site Request Forgery

https://cwe.mitre.org/data/definitions/352.html

[27] Prajna Bhavi, Dr. Chandramouli H, Dr. B.R. Prasad

Babu “A tool For Ferrating Out Software Vulnerability in

Aegis & Armament Program Redemption” from IJER

,Volume No.5, Issue Special: 4, pp:790-991.

https://en.wikipedia.org/wiki/PMD_(Software)

