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Abstract - Many parts of spacecrafts, airplane is made up of aluminum, which is thick or deep in section. For the analysis of deep 

or thick beams, a trigonometric shear deformation theory is used, taking into account transverse shear deformation effects, is 

developed. To represent the shear deformation effects, a sinusoidal function is used in displacement field in terms of thickness 

coordinate. The important feature of this theory is that the transverse shear stresses can be obtained directly from the use of 

constitutive relations with excellent accuracy, satisfying the shear stress conditions on the end surfaces of the beam. Hence, the 

theory obviates the need of shear correction factor. Using the principle of virtual work governing differential equations and 

boundary conditions are obtained. The thick aluminum beam is considered for the numerical study to show the accuracy of the 

theory.  The cantilever beam subjected to parabolic loads is examined using the present theory. Results obtained are discussed 

with those of other theories. 
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I. INTRODUCTION 

 

Euler-Bernoulli hypothesis disregards the effects of the shear deformation and stress concentration which is in elementary theory 

of beam bending hence it is suitable for thin beams and is not suitable for deep beams since it is based on the assumption that the 

transverse normal to neutral axis remains so during bending and after bending, implying that the transverse shear strain is zero. 

Since theory neglects the transverse shear deformation. It underestimates deflections in case of thick beams where shear 

deformation effects are significant. 

Timoshenko [1] showed that the effect of transverse vibration of prismatic bars. This theory is now widely referred to as 

Timoshenko beam theory or first order shear deformation theory (FSDT) in the literature. But in this theory transverse shear strain 

distribution is assumed to be constant through the thickness of beam and thus requires shear correction factor to appropriately 

represent the strain energy of deformation. 

Cowper [2] has given refined expression for the shear correction factor for different cross-sections of beam. The accuracy of 

Timoshenko beam theory for transverse vibrations of simply supported beam in respect of the fundamental frequency is verified 

by Cowper [3] with a plane stress exact elasticity solution. 

To remove the discrepancies in classical and first order shear deformation theories, higher order or refined shear deformation 

theories were developed and available in the open literature for static and vibration analysis of beam. Krishna Murthy [4], Baluch 

et al. [5], Bhimaraddi and Chandrashekhara [6] were presented parabolic shear deformation theories assuming a higher variation 

of axial displacement in terms of thickness coordinate. These theories satisfy shear stress free boundary conditions on top and 

bottom surfaces of beam and thus obviate the need of shear correction factor. 

Kant and Gupta [7], and Heyliger and Reddy [8] presented finite element models based on higher order shear deformation 

uniform rectangular beams. However, these displacement based finite element models are not free from phenomenon of shear 

locking [9, 10]. 

Dahake and Ghugal [11] studied flexural analysis of thick simply supported beam using trigonometric shear deformation theory.  

Ghugal and Dahake [12, 13] given the flexural solution for the beam subjected to parabolic loading. Sawant and Dahake [14] 

developed the new hyperbolic shear deformation theory. Chavan and Dahake [15, 16] presented clamped-clamped beam using 

hyperbolic shear deformation theory.  The displacement and stresses for thick beam given by Nimbalkar and Dahake [17]. 

Jadhav and Dahake [18] presented bending analysis of deep cantilever beam using steel as material. Manal et al [19] investigated 

the deep fixed beams using new displacement field. Patil and Dahake [20] carried out finite element analysis using 2D plane 

stress elements for thick beam. Dahake et al [21] studied flexural analysis of thick fixed beam subjected to cosine load. Tupe et al 

[22] compared various displacement fields for static analysis of thick isotropic beams. 

In literature, most of the researchers have used steel as a beam material. As many parts of the spacecrafts, airplane structures are 

made up of aluminum due to its low weight density. In this research, an attempt has been made to analyze the aluminum deep 

cantilever beam subjected to parabolic load. 

   

II. Development of Theory 

The beam under consideration occupies in 
zyx 0

Cartesian coordinate system the region: 
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2 2

h h
x L y b z      

 



 

6th International Conference on Recent Trends in Engineering & Technology (ICRTET - 2018) 

 

951 | ICRTET0187 `  www.ijream.org                                © 2018, IJREAM All Rights Reserved. 

where x, y, z are Cartesian coordinates, L and b are the length and width of beam in the x and y directions respectively, and h is the 

thickness of the beam in the z-direction. The beam is made up of homogeneous, linearly elastic isotropic material.  

 

2.1 The displacement field 

 The displacement field of the present beam theory is of the form as given below: 

                                                        

( , ) sin ( )

( , ) ( )

dw h z
u x z z x
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w x z w x
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where u  is the axial displacement in x direction and w is the transverse displacement in z direction of the beam. The sinusoidal 

function is assigned according to the shear stress distribution through the thickness of the beam. The 


 represents rotation of the 

beam at neutral axis, which is an unknown function to be determined. 

Normal strain 
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Shear strain  
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Stress-Strain Relationships 
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2.2 Governing Equations and Boundary Conditions 

Using the expressions for strains and stresses (2) through (4) and using the principle of virtual work, variationally consistent 

governing differential equations and boundary conditions for the beam under consideration can be obtained. The principle of 

virtual work when applied to the beam leads to: 
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                                                               (5) 

where the symbol  denotes the variational operator. Employing Green‟s theorem in Eqn. (4) successively, we obtain the coupled 

Euler-Lagrange equations which are the governing differential equations and associated boundary conditions of the beam. The 

governing differential equations obtained are as follows: 
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Cantilever beams:  

          At Free end: 

2

2

d w d
EI EI

dxdx



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3 2
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d w d
EI EI

dx dx


  

 at x = L and at Fixed end: 

dw
w

dx
 

= 0 at x = 0                 (8) 

Thus the boundary value problem of the beam bending is given by the above variationally consistent governing differential 

equations and boundary conditions.  

2.3 The General Solution of Governing Equilibrium Equations of the Beam  

The general solution for transverse displacement w(x) and warping function


(x) is obtained using Eqns. (6) and (7) using method 

of solution of linear differential equations with constant coefficients. Integrating and rearranging the first governing Eqn. (6), we 

obtain the following equation                                                    

                                                                

 3 2
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                                                                                                (9) 

where Q(x) is the generalized shear force for beam and  it is given by  

  1

0

x

Q x qdx C 
.  

Now second governing Eqn. (7) is rearranged in the following form:            
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A single equation in terms of


 is now obtained using Eqns. (11) and (12) as:  
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                                                                                                        (11)  

where constants  ,


 and  in Eqns. (10) and (11) are as follows  
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The general solution of Eqn. (11) is as follows: 

                                                         
2 3

( )
( ) cosh sinh

Q x
x C x C x

EI
  


  

                                                                            (12) 

 The equation of transverse displacement w(x) is obtained by substituting the expression of 


(x) in Eqn. (12) and then integrating 

it thrice with respect to x. The general solution for w(x) is obtained as follows: 

III.                           
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where, 1 2 3 4 5 6, , , , and C C C C C C
are arbitrary constants and can be obtained by imposing natural (forced) and / or geometric or 

kinematical boundary / end conditions of beam.  

III. Illustrative Example 

In order to prove the efficacy of the present theory, a numerical example is considered. For the static flexural analysis, a uniform 

beam of rectangular cross section, having span length „L’, width „b’ and thickness „h’ of homogeneous, elastic and isotropic 

material is considered. The material properties for beam are as follows: 

 

Table 1: Properties of Aluminum 6061-T6, 6061-T651 [23] 

Physical Properties Value 

Density 2700 kg/m3 

Ultimate Tensile Strength 310 MPa 

Modulus of Elasticity 68.9 GPa 

Notched Tensile Strength 324 MPa 

Ultimate Bearing Strength 607 MPa 

Poisson's Ratio 0.33 

Shear Modulus 26 GPa 

Shear Strength 207 MPa 

 

A. Cantilever beam subjected to parabolic load   

The beam has its origin at left hand side fixed support at x = 0 and free at x = L. The beam is subjected to parabolic load, on 

surface z = +h/2 acting in the downward z direction with maximum intensity of load 0q
. 

 

 

 

                                 

 

 

 

 

 

 

Fig. 1: Cantilever beam with parabolic load 

General expressions obtained for 
 w x

 and 
 x

 are as follows: 
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where ( ) (sinh cosh )x x x     

The axial displacement and stresses obtained based on above solutions are as follows 
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IV. RESULTS 

In this paper, the results for axial displacement, transverse displacement, inplane and transverse stresses are presented in the 

following non dimensional form for the purpose of presenting the results in this work.   
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Table 2:  Non-Dimensional Axial Displacement ( u ) at (x = L, z = h/2),     Transverse Deflection ( w ) at (x = L, z =0) Axial 

Stress ( x
) at (x = 0, z = h/2) Maximum Transverse Shears Stresses 

CR

zx
( x=0.01L, z =0) and 

EE

zx
(x= 0, z =0) of the 

Cantilever Beam Subjected to Parabolic Load for Aspect Ratios. 

 

Model L
h   

u  w  x
 

CR

zx
 

EE

zx
 

TSDT 

4 

25.5378 6.7969 35.8715 1.8449 -2.9180 

HPSDT 25.5659 6.8083 39.0900 2.2657 -4.7704 

HSDT 25.5495 6.8019 36.4960 1.9929 -3.0253 

FSDT 25.6000 7.1458 24.0000 0.7286 3.9400 

ETB 25.6000 6.3333 24.0000 — 3.9400 

TSDT 

10 

399.8446 6.4094 180.1367 7.9684 3.3635 

HPSDT 399.9148 6.4108 188.1392 8.7012 3.9907 

HSDT 399.8738 6.4100 181.5160 8.1970 3.9364 

FSDT 400.0000 6.4633 150.0000 1.1385 9.8500 

ETB 400.0000 6.3333 150.0000 — 9.8500 

 

Graphical variations is only for aspect ratio 4 as follows: 
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Fig. 2: Variation of axial displacement ( u ) 

through the thickness of cantilever beam at (x 

= L, z)  

 

Fig. 3: Variation of maximum transverse 

displacement ( w ) of cantilever beam at 

(x= L, z = 0) with aspect ratio S. 

 

Fig. 4: Variation of axial stress 

( x
) through the thickness of 

cantilever beam at (x = 0, z)  
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Fig. 5: Variation of transverse shear stress    

( zx
) through the thickness of cantilever 

beam at (x = 0.01L, z) obtain using 

constitutive relation. 

 

Fig. 6: Variation of transverse shear stress 

( zx
) through the thickness of cantilever 

beam at (x = 0, z) obtain using equilibrium 

equation. 

 

 

V.  DISCUSSION OF RESULTS  

The comparison of results of maximum non-dimensional axial displacement ( u ) for the aspect ratios of 4 and 10 is presented in 

Table 2 parabolic load (see Fig. 1). Among the results of all the other theories, the values of axial displacement, at the free end of 

the beam, given by present theory are in close agreement with the values of ETB, FSDT and other refined theories for aspect ratio 

4 and 10.The through thickness distribution of this displacement obtained by present theory is in close agreement with classical 

and other refined theories as shown in Fig. 2 for aspect ratio 4. The comparison of results of maximum non-dimensional 

transverse displacement ( w ) for the aspect ratios of 4 and 10 is presented in Table 1. Among the results of all the other theories, 

the values of present theory are in excellent agreement with the values of other refined theories for aspect ratio 4 and 10 except 

those of classical beam theory (ETB) and FSDT of Timoshenko.  The variation of w  with aspect ratio (S) is shown in Fig. 3. For 

the aspect ratios greater than 20 all the refined theories converges to the values of classical beam theory. The results of axial stress 

( x
) are shown in Table 2.   The axial stresses given by present theory are compared with other higher order shear deformation 

theories. Present and other higher order refined theories provide the non-linear variations of axial stress across the thickness at the 

built-in end due to heavy stress concentration.  The comparison of maximum non-dimensional transverse shear stress for a 

cantilever beam with parabolic load obtained by the present  theory and other refined theories is presented in Table 1 for aspect 

ratio of 4 and 10. The maximum transverse shear stress obtained by present theory using constitutive relation is in close 

agreement with that of other higher order theory (HSDT). The values obtained by HPSDT using equilibrium equation show 

considerable departure from the values of present and HSDT. The values of present theory and those of HSDT are in good 

agreement with each other. The through thickness variation of this stress obtained via constitutive relation are presented 

graphically in Fig. 5 and those obtained via equilibrium equation are presented in Fig. 6. It can be seen from these figures that the 

nature of variation obtained by both the approaches is different from each other. The through thickness variation of this stress via 

equilibrium equation shows the considerable departure, with change in sign, compared to the one given by ETB and FSDT due to 

heavy stress concentration associated with the built-in end of the beam .  The maximum negative value of this stress occurs at the 

neutral axis. However, ETB and FSDT yield the identical positive values this stress at z = 0 and the identical variations across the 

thickness of the beam. It is seen that the anomalous behavior in the vicinity of built-in end cannot be captured by constitutive 

relation. Further, lower order theories, ETB and FSDT, cannot predict this behavior even with the use of equilibrium equation.  
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VI. CONCLUSION 

The use of present theory gives accurate results as seen from the numerical examples studied and it is capable of predicting the 

local effects in the vicinity of the built-in end of the cantilever beam. This validates the efficacy and credibility of trigonometric 

shear deformation theory. 
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