
 International Journal for Research in Engineering Application & Management (IJREAM)
ISSN : 2494-9150 Special Issue-01, MAR 2016.

IJREAMSP01019 www.ijream.org © 2016, IJREAM All Rights Reserved.

Abstract - The Forward Dictionary is used to get the definition from the user entered words whereas in the Reverse

Dictionary the user enters the phrase or sentence and gets the words similar to the concept of the input phrase. The

Reverse Dictionary is a non-alphabetical dictionary. At times people go on describing the situation in long sentences.

Reverse dictionary gives a precise and appropriate word to one’s thoughts. In this paper, our system provides higher

quality improvements in the performance. In the proposed system, user can add his own words along with its descriptions

which he can use for his own work in near future.

Keywords —Forward Dictionary (FD), Reverse Dictionary (RD), Reverse Mapping, Forward Mapping, Stemming, Candidate words

I. INTRODUCTION 1

Dictionaries are one of the most popular types of books

available today. From the first years of primary school to

the last years of life, any user of a language will consult a

dictionary as part of day to day life[3]. When using a

dictionary, the user will look up a single word, known as the

headword (which may consist of more than one word

separated by spaces, known as a compound word) and will

be given a definition, which can be defined as a set of

descriptor words[4].

A. Reverse Dictionary

Forward dictionary is the one which maps from word to

their definitions[3]. For example: ‘PEDANT’-One who

makes display of his learning. the function of a dictionary

can be described as:

lookup(h) =d

A reverse dictionary is a collection of concepts or phrases,

the user enters the concept as the meaning receiving a set of

words as output Reverse dictionary perform reverse

mapping i.e. the user enters phrase and the words are output

equivalent to the entered phrase[10]. For example, in

forward dictionary the user gets the meaning of the word

“inaudible” as “incapable of hearing”. In reverse dictionary,

the user gets an opportunity to enter “cannot hear” as input,

and gets output as “inaudible” and possibly other words

with similar meaning as output. A reverse dictionary

functions by returning a headword given a set of descriptor

words:

lookup(d)=h

In this approach, the reverse dictionary is used to predict the

similarity between the concept and phrases. The Reverse

mapping set is created. The basic steps to create the reverse

dictionary are the same for all languages, only the

techniques to extract the meaning differs[10]. Such a

reverse dictionary would be helpful for students,

professional writers, teacher, etc.

B. Aim and objective

The aim is to create a working reverse dictionary. The aim

of this report is to describe the design, implementation and

results of the reverse dictionary as well as explaining the

issues encountered during its completion and how they were

addressed.

Objective

1Prof.Pravin Adivarekar, 2Nitin Kumar Singh, 3Shraddha Shanbhag, 4Renuka Jagtap

1Asst. Professor, 2,3BE Student, 1,2,3Comp. Engg. Dept, SSJCET, Asangaon, India.

1engineerpravin2008@gmail.com, 2nitinsingh7860@rocketmail.com, 3shraddha95@yahoo.com,

4rjrenuka01@gmail.com

Database Driven Reverse Dictionary

 International Journal for Research in Engineering Application & Management (IJREAM)
ISSN : 2494-9150 Special Issue-01, MAR 2016.

IJREAMSP01019 www.ijream.org © 2016, IJREAM All Rights Reserved.

 More accurate the data more accurate the result.

 This approach can provide significant improvements in

performance scale without sacrificing solution quality

 Objective in proposed is to provide efficient reverse

dictionary to users like students, teachers, writer, etc.

 A reverse dictionary takes a user input phrase describing

the desired concept, it reduce the well-known conceptual

similarity problem.

 Objective here is not only to have correct reverse

dictionary but to also have a dictionary in users own

language.

 Adding new feature like word searching enhances the

dictionary

II. LITERATURE SURVEY

Let’s take analysis of different proposed methodologies and

our proposed method. Various popular methods are:-

TABLE 1 :LITERATURE TABLE

TECHNIQUE REMARK EXAMPLES
1) 1.Pos Tagging[10][2] Part-Of-Speech Tagging is

used to assign parts of

speech to each word. Pos

tagger performs

pos tagging. The natural

languages contain lot of

ambiguity,

which can make

distinguishing words

difficult so pos tagger is

used.

The two types of

pos tagger are

Brill’s tagger and

Stanford POS

tagger.

2) 2.Stemming

3) [10][2]

Stemming algorithm is a

computational procedure

which reduces all words

with same stem to a

common form by

stripping each word of its

derivational suffixes.

Comparison of stemmed

words becomes easier and

in addition storing

becomes easier.

The words with

common stem:

Connect

Connecting

Connection

Connected

3.Stop Words[2]. These are the words which

do not tell much about the

content but helps humans

to understand the contents

.So removing these words

will increase the accuracy

of the search results and

reduce the search time.

List of stop words:

about

above

across

after

again

against

all

4.Candidate

Words[7].

To find candidate words

phase consists of two key

sub-steps:

1) build RMS 2) query

RMS. Then rank these

words in the order of

quality of match.

Input :

Present in large

Quantity

Candidate words :

Ample, bigger,

larger, wide, bulky,

tremendous

III. PROPOSED SYSTEM

A reverse dictionary is a dictionary which is kept in reverse

order (usually referring to being in a so-called "reverse"

order) that provides the user with that would be difficult to

obtain from a traditionally alphabetized dictionary[5].

Reverse dictionary can be of two types reverse word

dictionary and reverse conceptual dictionary.

The reverse word dictionary is a dictionary in which the

words are not in alphabetical order as traditional dictionary.

Reverse concept dictionaries are those where the concept is

taken as input and set of words defining the input are given

as output[4]. Reverse dictionaries have been published for

most major alphabetical languages. In Reverse dictionary

user enters any logical phrase and gets number of words as

output[10]. for example: if user enters “A strong smelling

colorless gas” and get “Ammonia”, ”nitrogen”

“anonymous” as output.

Reverse dictionary is based on the concept that a phrase

entered by user if not exactly matching the word then they

should be at least conceptually similar[5]. Building a

ranking based dictionary, helps user to choose from a set of

words which are closely related to each other[4]. Hence it

becomes easy and time saving for user to choose words

from such set. Example: RMS for “BELIEVING IN GOD,

RELIGION” will be faith, trust, reliance, loyalty, honesty

these words are ranked based on their concept similarity.

The stop words like “about, above, across” etc is ignored as

they don’t tell much about the content.

Forward mapping (standard dictionary): A forward mapping

applies all the senses for a particular word phrase. This can

be expressed in the form of a forward map set (FMS) [6].

For example, suppose that the term “jovial” is associated

with various meanings, including “showing high-spirited

merriment” and “pertaining” to the god Jove, or Jupiter.”

Reverse mapping (reverse dictionary): Reverse mapping is

applied to terms and can be expressed as a reverse map set

(RMS)[6]. To build an RMS means to find a set of words in

whose definitions any word “W” is found. Building an RMS

means to find a set of words which are conceptually closer

to the user input phrase. When the user input do not get

enough output. The RMS of words also form a part of the

output words.

In existing reverse dictionary user used to get over a 100

search results as output for any input. Reverse Dictionary

also uses the concept of Stemming. It is a process of

 International Journal for Research in Engineering Application & Management (IJREAM)
ISSN : 2494-9150 Special Issue-01, MAR 2016.

IJREAMSP01019 www.ijream.org © 2016, IJREAM All Rights Reserved.

obtaining the root form of the word [2]. For example: the

root form of the word cleared is “clear” also words like

clearing, clears should be converted to their root form clear.

Thus, the reverse dictionary which uses the concept of

building reverse mapping set is built. In existing dictionary

user enters the phrase and get number of words as output

but sometimes it becomes time consuming for user to

choose one word from it. Hence building a ranking based

dictionary helps user to get the output words easily without

consuming lot of time [4].

IV. SYSTEM ARCHITECTURE

FIG 1: SYSTEM ARCHITECTURE

The implementation architecture of reverse dictionary

application is as [2] [4]:

 Take Input Phrase from user.

 Split the user input phrase and perform

stemming technique so as to obtain root form of

each word.

 All the stop words are removed to get the better

performance. Stop words are those whose removal

does not hamper the performance of the process.

 Reverse Mapping Set is built according to the

input phrase.

 Query is generated to get respective set of

synonym words, set of Antonym words & set of

Hypernym words. Each of these set of words is

connected to their respective databases. All these

databases are parsed to get the appropriate output.

 Syn DB (Synonym Database): It contains the

set of synonym words

 Ant DB (Antonym Database): It contains the

set of Antonym words.

 Identify and rank candidate words based on

user input.

 Execute the query.

 Return output words to user

V. ALGORITHMS IMPLEMENTATION

At a high level, our approach consists of two sequential

steps [1]. Upon receipt of a user input phrase, first find

candidate words from a forward dictionary data source,

where the definitions of these candidate words have some

similarity to the user input. Then rank the candidate words

in order of quality of match. The find candidate words

phase consists of two key sub steps: 1) build the RMS; and

2) query the RMS.

1. BuildRMS

1: Input: a dictionary D.

2: for all mapping Wi  Sj belongs to D do

3: Extract the set of terms {t1 . . . tx}, tk belongs to SPj

4: for all tk do

5: Apply stemming to convert tk to convert it to its general

form tk*

6: Add Wi to R(tk*) and increment N(tk*) by 1.

2. GenerateQuery(U, α, β)

1: U=U s.t.ti  U, ti  L1

2: Form a boolean expression Q by adding all ti U to Q,

separated by AND

3: Q = Q OR ExpandAntonyms(Q)

4: for all ti  U do

5: Apply stemming to ti to obtain ti*

6: Replace ti in Q with (ti OR ti*)

7: Reorder terms in Q s.t. all nouns appear before verbs,and

verbs before adjectives and adverbs

8: O = ExecuteQuery(Q)

9: if |O| >α then

10: Return SortResults(O)

11: for all ti  Q s.t. ti  L2 do

12: Remove ti from Q

13: O = O U ExecuteQuery(Q)

14: if |O| > α then

15: Return SortResults(O)

16: O = O [ExpandQuery(Q, “synonyms”)

 International Journal for Research in Engineering Application & Management (IJREAM)
ISSN : 2494-9150 Special Issue-01, MAR 2016.

IJREAMSP01019 www.ijream.org © 2016, IJREAM All Rights Reserved.

17: if |O| > α then

18: Return SortResults(O)

19: O =O [ExpandQuery(Q, “hyponyms”)

20: if |O| > α then

21: Return SortResults(O)

22: O = O  ExpandQuery(Q, “hypernyms”)

23: if |O| > α then

24: Return SortResults(O)

25: Create a list l of all terms ti  Q

26: Sort l in descending order based on N(ti)

27: while |Q > 2| do

28: Delete ti from Q, where ti has the highest value of N(ti)

in l

29: O = O  ExecuteQuery(Q)

30: if |O| > α then

31: Return SortResults(O)

32: else

33: Delete ti from l

3. ExecuteQuery(Q)

1: Given: a query Q of the form Q = t1 1 t2 2 t3 . . .tk-1

k-1 tk , where i  {AND,OR}

2: Oe = R(t1) 1 R(t2) 2 R(t3) . . . R(tk-1) k 1

R(tk),where if i = AND, i =  and if i = OR, i = 

3: return Oe

4. ExpandQuery(Q, SetType)

1: Given: a query Q of the form Q = t11 t22 t3 . . .tk-1

k-1 tk, where i  {AND, OR}

2: for all ti  Q do

3: if SetType is “synonyms” then

4: F =Wsyn(ti)

5: if SetType is “hyponyms” then

6: F =Whyo(ti)

7: if SetType is “hypernyms” then

8: F =Whyr(ti)

9: Create a new subquery q = (ti)

10: for all tj  F do

11: Add tj to q, connected with OR

12: Replace ti in Q with q

13: Return ExecuteQuery(Q)

5. SortResults(O, U)

1: Create an empty list K

2: for all Wj  O do

3: for all Sk  W do

4: if ti  Wj s.t. ti  L1 then

5: Remove ti from Wj

6: Compute Z(S) and Z(U)

7: for all pairs of terms (a, b), where a  Z(S) and b  Z(U)

 do

8: if a and b are the same part of speech in Z(S) and Z(U),

respectively then

9: Compute (a,b)= 2E(A(a,b))/(E(a)+E(b))

10: Compute (a, S) = (d(Z(S))-da)/d(Z(S))

11: Compute (b,U) = (d(Z(U))-db)/d(Z(U))

12: Compute (a,S,b,U) = (a, S) (b,U) (a,b)

13: Use (a, S, b, U) values to measure the phrase similarity

M(S,U) of S and U following the algorithm described in

14: Insert the tuple (S,U,M) in to the list K

15: Sort the tuples in K in descending orderbased on the

value of M

16: For the top _ word senses in K, return the corresponding

word.

TABLE 2: NOTATION

NOTATION MEANING

T
any legitiment word in the english

language

t* stemmed (generic)version of t

P a sequence of one or more words

D a set of mappings PP

W a word phrase

S a sense phrase

F(W)
a forward dictionary ,i.e., a set of

mappings WS

R(t)

reverse mapping for t, i.e., all the

w’s that include t in their

definitions

N(t*)
count of definitions in which a

stemmed term t* appears

Wsyn(t) set of synonyms of t

Want(t) set of antonyms of t

Whyr(t) set of hypernyms of t

Whyo(t) set of hyponyms of t

U a user input phrase

G set of negation words

Q
boolean expression query, based on

U

L1 the set of level 1 stop words

L2 the set of level 2 stop words

O set of output W Ps satisfying Q

Α
minimum threshold number of W P

 O required to stop processing

Β
maximum number of W P to

include in output

(t1,t2)
term similarity of the terms t1 and

t2

(t,P) importance of t in P

Z(P) parse tree of a phrase P

Dt depth of t in a phrase P

d(Z(P)) overall depth of a parse tree P

VI. MATHEMATICAL MODEL

The mathematical model of reverse dictionary application is

as [5].

Set Theory –

1. Identify Candidate Words:

U is the phrase which user gives input.

 International Journal for Research in Engineering Application & Management (IJREAM)
ISSN : 2494-9150 Special Issue-01, MAR 2016.

IJREAMSP01019 www.ijream.org © 2016, IJREAM All Rights Reserved.

U = {t1,t2,t3….tn},t1, t2...tn are terms used in Phrases

i.e.SeDi. Find out candidate words and remove stop

words from phrase such that tn Se in Di.

2. Apply Stemming To each Candidate Word:

Form a set of terms {t1…….tn} such that tn Se ,Obtain

tn from each term from above Set.

3. Obtain Query:

Form a set W. Add all candidate terms to it separated by

AND such that tn U; tnS1. S1 = set of category1 stop

words. Remove negation: Let Q = t1*t2*t3… Where *

{AND, OR}negative tn Q

4. Obtain Results:

If |O| > a; where a = minimum no. of words to sort results.

Sort Results O.tn Q such that tn S2 where S2 = set

of category2 stop words.

If |O| > a Sort Results O

O = O getSynonym(Q)

If |O| > a Sort Results O

O = O getHypernyms(Q)

If |O| > a Sort Results O

O = O getHyponyms(Q)

Let Q be the set of Nw = {not, never} remove such words

from set with its Synonym word Like for

Execute Query On Set:

Given W = {w1, w2, w3….wn}

 W = w1*w2*w3*w4 where * {AND, OR}.

If * = AND Then w1 w2

If * = OR Then w1 w2.

Where W= set of resultant words

{w1, w2...} is a set of similar meaning words with phrase U

{t1, t2, t3….} = {t1 AND t2 AND t3 AND}

Here terms are combined with AND

{t1, t2, t3, t4….} = {t1 AND t2 AND (t3 OR t4)}

Here similar terms are combined with OR

5. Sort Result:

W = {w1, w2, w3…} the result should be in Sorted format

with weightage. For weightage a Sense phrase Se and User

phrase U is taken into account.paires of terms tn (a, b)

Where aSe and b U Computing similarity of term by

the given formula

ρ(a,b) = 2*E(A(a,b))/(E(a)+E(b))

Where ρ = similarity returned by the equation.

A (a, b) = gives LCA (Least Comman Ancestor) by open

NLP parser.

E (a) = gives the depth of the term in Wordnet Computing

importance of a term λ (a, S) is given by formula.

Λ (a, S) = (d (Z(S))-da)/ d (Z(S)

Where Λ = importance of a term in Sense phrase

 S,da = depth of term .

d (Z(S)) = overall depth where a S

Computing importance of a term λ (b, U) is given by

formula. Λ (b, U) = (d (Z (U))-db)/ d (Z (U)

Where Λ = importance of a term in User phrase

 U,db = depth of term,

d (Z(U)) = overall depth where b U.

Using the information obtained from above we calculate

weighted similarity factor μ given by

μ (a,S, b,U) = Λ(a,S)* Λ(b,U)* ρ(a,b)

Where a S and b U.

VII. RESULTS AND DISCUSSION

This paper concentrates on only training part. When the

number of the resultant output is less then the accuracy is

more. Below given graph shows the accuracy in the

performance of the system. The graph is based upon the

number of suggestions of output words and accuracy of the

system in terms of percentage.

TABLE 3: RESULT OF RANKING WORDS

Number of

suggestions

1 2 3 4 5 6

Accuracy

percentage

100 99 95 94 90 90

84
86
88
90
92
94
96
98

100
102

1 2 3 4 5 6

A
C

C
U

R
A

C
Y

 P
E

R
C

E
N

T
A

G
E

NUMBER OF SUGGESTIONS

FIG 2: GRAPH OF THE SYSTEMS PERFORMACE

 International Journal for Research in Engineering Application & Management (IJREAM)
ISSN : 2494-9150 Special Issue-01, MAR 2016.

IJREAMSP01019 www.ijream.org © 2016, IJREAM All Rights Reserved.

VIII. CONCLUSIONS

Depending upon the user input phrase candidate words are

found and ranked according to the quality of match to give

output. If the user doesn’t find result of his phrase then, he

can add the words with the appropriate meaning to the

system

These added words can be further used by user in his work.

Thus, adding new feature such as adding words with its

meaning by the user itself for his work enhances the

previously available reverse dictionary.

ACKNOWLEDGEMENT

This project consumed huge amount of work, research and

dedication. It would not have been possible if we did not

have a support of many individuals and organizations.

Therefore we would like to extend our sincere gratitude to

all of them.

I am using this opportunity to express my gratitude to

everyone who supported me to publish this paper . I am

thankful for their aspiring guidance, invaluably constructive

criticism and friendly advice during the work. I am sincerely

grateful to them for sharing their truthful and illuminating

views for preparing this work.

REFERENCES

[1] Ryan Shaw, Member, IEEE, AnindyaDatta, Member, IEEE,

Debra Vander Meer, Member, IEEE, and Kaushik Datta, Member,

IEEE ,”Building a Scalable Database-Driven Reverse

Dictionary”, 2013.

[2] E.Kamalanathan1 and C. Sunitha Ram, “Implementing a

Higher Quality Input Phrase To Driven Reverse Dictionary”,

International Journal of Advance Foundation and Research in

Computer (IJAFRC)Volume 1, Issue 4, April 2014.

[3] Akanksha Tiwari1, Prof. Rekha P. Jadhav, International

Journal of Modern Trends in Engineering and Research, “Survey

On Building A Database Driven Reverse Dictionary”.

[4] PriyankaD. Nanaware1 Rahul. K. Ambekar, International

Journal of Advanced Research in Computer Science and Software

Engineering , “Building and Improving Scalable Database Driven

Reverse Dictionary”, Volume 4, Issue 7, July 2014.

[5] PriyankaD. Nanaware1 Rahul. K. Ambekar International

Journal of Engineering and Advanced Technology, “Enhancing

Scalable Database-Driven Reverse ictionary” Volume-3, Issue-5,

June 2014.

[6] Nagesh Racha,Varsha Balghare,Sabir Khan,prof.Seema

Bhardwaaj, “A Proposed System for A Scalable Database Driven

Reverse Dictionary” Volume 3, Issue 2, February 2015

[7] E.Kondala Rao, M.S.R.Lakshmi Reddy“Exposure Towards

Accuracy Enhancement for Retrieval of Information” Volume

No.2, Issue No.5, August – September 2014, 1260 – 1263.

 [8] Jincy A K, Sindhu L, “A Survey of Building a Reverse

Dictionary”, (IJCSIT) International Journal of Computer Science

and Information Technologies, Vol. 5 (6), 2014.

[9] Kesavaram.P.H, T.Muthamilselvan, “ Building a ranking

based reverse dictionary” , International Journal of Innovative

Research in Computer and Communication Engineering Vol. 2,

Issue 4, April 2014.

[10] D.Gaya, “A Study Of Building An Reverse Dictionary”,

International Journal of Scientific and Research Publications,

Volume 5, Issue 7, July 2015.

[11] R. Mihalcea, C. Corley, and C. Strapparava, “Corpus-

Based and Knowledge-Based Measures of Text Semantic

Similarity,” Conf. Artificial Intelligence, 2006.

[12]. M. Porter, “The Porter Stemming

Algorithm,”http://tartarus.org/martin/PorterStemmer/,2009.

