
International Journal for Research in Engineering Application & Management (IJREAM)
ISSN : 2494-9150 Special Issue-01, MAR 2016.

IJREAMSP01022 www.ijream.org © 2016, IJREAM All Rights Reserved.

ADEPT SEARCH: A DESKTOP SEARCH

ENGINE

1Prof. Akshay Agrawal, 2Venkatachalam.S, 3Vicky Vijay Shirkar, 4Gunjan Vikas Chaudhary

1Asst. Professor, 2,3BE Student, 1,2,3Comp. Engg. Dept, SSJCET, Asangaon, India.

1akshay1661@gmail.com, 2heartbreakkid4454@gmail.com, 3vshirkar077@gmail.com, 4gunj143@gmail.com

Abstract: This system refers to this index files when processing the searching for user’s request in a fast and

produces effective results. Searching files on personal computer is becoming more popular as both personal and

enterprise computer users are finding that sorting and organizing files that are getting bigger in both size and

quantity is getting more difficult. The algorithms are experimentally evaluated with synthetic and real data. The

results show that their relative performance depends on the problem characteristics.

Keywords: Data crawler, Task scheduler, Data indexer, Data Searcher, Namazu indexer, NSE Query

I. INTRODUCTION

With the upcoming of modern technology, computer

can complete many kinds of complex tasks.

Therefore, the number of files stored in an

individual’s computer is increasing very rapidly. At

the same time, even the cost of storage equipment

with large capacity is getting lower and lower, the

number of various documents stored in the personal

computer, such as video, audio files, digital photos,

text files, is increasing very quickly. However, the

problem arises is computer users have to spend much

time searching their information in the sea of the

computer data, and sometimes, even seen or used

files cannot be found easily.

Desktop search engine emphasizes on mining all

available information in an individual’s computer,

including web browser history, email files,

documents, multimedia files and so on. Desktop

search tools search within a user's own computer

files as opposed to searching the Internet. A desktop

search program is that search results are displayed

quickly due to the use of proper indexes. Desktop

search emerged as a concern for large firms for two

main reasons untapped productivity and security.

Most desktop search engines build and maintain

an index database to achieve reasonable performance

when searching several gigabytes of data. Indexing

usually takes place when the computer is idle and

most search applications can be set to suspend

indexing if a portable computer is running on

batteries, in order to save power. In addition to not

requiring persistent storage, more powerful queries

can be issued, whereas indexed search engines are

limited to keyword-based queries. The benefits to not

having indices is that, in addition to not requiring

persistent storage, whereas indexed search engines

are limited to keyword-based queries.

II. LITERATURE SURVEY

A. PERSONAL INTEREST ANALYZER ON END-

USER-SIDE AND PERSONALIZED COMPUTING

Personalized search, the key is the use of personal

interest information; the personal interest information

is produced by personal interest analyzer through

analysis and personalized computing of the user's

web clicks and browsing, and save it into the

personalized file. So, the personal interest

information of each target field in personalized file

wills directly affects the search result produced by

personalized search engines though information

filtering of crawled web pages.

When build a personalized file, the personal interest

analyzer can provide users a wizard interface to guide

the user to enter target fields, like woke field and life

target field, and so on. Each target field contains

some basic personal interest information. It can track

the user's query keywords, the target field being put

into use currently and extract pertinent keywords

form the user's clicks and browsing of the search

result based on this keyword, record the time of this

visit, and update these data into the corresponding

target field in the personalized file. In the process of

updating, there is a need to separate the layers of the

International Journal for Research in Engineering Application & Management (IJREAM)
ISSN : 2494-9150 Special Issue-01, MAR 2016.

IJREAMSP01022 www.ijream.org © 2016, IJREAM All Rights Reserved.

keywords, each layer as a field of the personalized

file, and to limit the number of the keywords in each

layer. Each layer set the granularity of the number of

occurrences and the up limit of the number of the

keywords, used to debase the layer of the keywords

in the personalized file that occurrences are lower

and wash out the keywords that have no occurrence

for a long time.

B. INTEGRATION OF WEB-BASED INTERFACE

WITH NAMAZU INDEXER

Namazu is working in the terminal or console that

requires users to type the command to run the

searching process. The command used require user to

know the location of index file as well as the options

available with the command. Hence, the motivation

of this work: by integrating Namazu indexer with a

web-based interface via java script, an interactive and

user-friendly desktop search tools would be

developed. The indexer will open and enter the

required folders or partition recursively and crawls

through all the text files to extract the file

information.

C. INDEXER

The Indexer is the box labeled NSE in the right-hand

portion. It is managed by the DB2 Net Search

Extender (NSE). NSE is a featured text search engine

integrated with the IBM DB2 DBMS product. NSE

supports the creation of text indexes, and can index

the output on individual columns of applying a user-

defined function to a column, which is the feature we

exploit. NSE manages IR-style inverted index over

the virtual documents returned by the Crawler UDF

described in the previous section.

D. KEYWORD SEARCH PROCESSOR

The Keyword Search Processor from box labeled

“Translate Keywords to NSE Query”. A user’s

keyword-based query is translated to an NSE

invocation in the form of a SQL query invoking the

special contains function.

For example, after indexing our input: Schema graph

G where nodes are relations and edges are foreign

key constraints, set of root relations RS, and an

inserted, deleted, or updated tuple r from Relation

Rout put: Root tuples RT whose text objects and

virtual documents need to be recomputed.

III. PROPOSED SYSTEM

With the increase of personal computer, desktop

search is now an important aspect; researches on

desktop search are a common aspect now-a-days.

Currently, there are two approaches used for desktop

searching: one is to find the file location directly, and

the other way of searching files is by their file name,

type, text content. Basically, these methods are based

on basic information of a file, such as file name,

location, and updated time, which are considered as

the main hints to complete the search function.

However, they cannot effectively manage a large

number of data if provided.

Therefore, here some new technologies on desktop

search have been proposed, including the following

aspects:

 Desktop search engine can be extended to the

internal network through PnP protocol, so you

can search all files in all computers which are

connected over LAN network.

 The retrieval precision of results in desktop

search has been excelled by using the

relationship between computer data and user's

schedule.

 In order to make better search accuracy,

integrating semantic expertise to the desktop

search process, questioning with natural

language technology in desktop search and

concept-based search are given.

 Based on the technologies of logic and context,

for example, tenet and user mining, desktop

search outcome can be enhanced.

A. THE ARCHITECTURE

The proposed system mainly uses the following

modules for searching viz :

 Data Crawler:

The main function is to scan the local file-system

constantly and collect different formatted documents

as quickly as possible from local file-system. The

main function of Data Crawler is to scan the local

file-system regularly and collect different form of

International Journal for Research in Engineering Application & Management (IJREAM)
ISSN : 2494-9150 Special Issue-01, MAR 2016.

IJREAMSP01022 www.ijream.org © 2016, IJREAM All Rights Reserved.

documents quickly as possible from local file-system.

The collected data may be from different data

sources, such as register of entities of files folder,

Dynamic File Monitor, mails of various clients,

browsing history and so on. Therefore, data

collection needs distinct components of different data

sources, and all data is modified into the same format

for further scheduled process.

 Task scheduler:

Task Scheduler acknowledges the data in Prioritized

Queue to the Indexer effectively in order to improve

the competence of index which is the prime function

of Task Scheduler. According to the stated

scheduling algorithm, Task Scheduler submits the

data in preeminence Queue to the Indexer effectively

in regulation to improve the efficiency of index. It is

the prime function of Task Scheduler.

 Data indexer:

The primary function of Data Indexer is to excerpt

text and information of the files collected by the

Crawler and then index them. The accustomed items

of index are including filename, author’s name, file

path updated time, text. Text files need word

segmentation. Indexing process usually does inverted

index (Inversion Index), i.e., items forms the index to

find the appropriate document. Text files needs word

bisection. Indexes are usually used for inverted index

from which it can find the appropriate document

from given items of index.

 Data searcher:

Data Searcher search the watchword acknowledged

by user in FirteX Index Database, and submits the

results obtained to the end user through user

interface. Then Data Searcher will catch related

documents, and gives each document a mark to

represents relevant degree between the document and

the queries. The search results will be ranked

according to rank algorithm used in Rank module and

later the final results will be displayed to the user’s.

Syntax Constructor is based on FirteX query syntax.

It implements the function of multi-keyword search

and multi-field search. Different types of files have

different fields. For example, text files have text

information, while pictures have pixel information

but no text, and music files have titles, artists and

genre information. Users can search for these fields

while FirteX support multi-field search

Fig 1: ARCHITECHTURE

IV. MATHEMATICAL MODEL

Suppose the user poses a query q resulting in a large

set of results Cand(q,F), and we have (i) q _

content(f) for all files f 2 Cand(q,F), and (ii) there is

only one file f0 2 Cand(q,F) such that q \ name(f0) 6=

;. Ignoring for a moment all the other features, and

assuming that the user strives to formulate a selective

query, it is reasonable to conjecture that the user

formulated q while having in mind (either implicitly

or explicitly) the filename of f_ q|F. And from this,

we have that f0 is more likely to be the desired file

f_q|F than any other file in Cand(q,F).

Extending this intuition to typically more fuzzy

situations that happen in practice, Selective combines

(i) the information carried by the textual properties of

the files in Cand(q,F), and (ii) the (observed on

Cand(q,F)) frequency of textual connection between

each such property and query q. Formally, Selective

is computed as follows. We use nz(Featureq) to

denote the number of files f 2 Cand(q,F) that have a

non-zero (that is, some non-trivial) value Featureq(f).

Given that,

International Journal for Research in Engineering Application & Management (IJREAM)
ISSN : 2494-9150 Special Issue-01, MAR 2016.

IJREAMSP01022 www.ijream.org © 2016, IJREAM All Rights Reserved.

V. ALGORITHM

The algorithm for merge of inverted lists is based on

the index structure. We denote variant of B-tree as

SB-tree in following manner.

Let P(w; t) be a predicate: the word w is present in

the given document t.

Queries of given form are: find all documents t,

where ^n i=1_mij=1 P (wij; t).

Let Q = [n i=1 [mij=1 wij be a set of all terms that

occurs in the query.

For query evaluation jQjstacks where elements of

SBtree entries contain text numbers in ascending

order.

The entries of the leaf level nodes are placed into

stacks: (Elem; elem; 0; NULL),

Given elem is a text number obtained, dead space is

zero and pointer to child node is null.

The stacks referred in the algorithm are of two forms:

Stack(i) i = 1; : : : ; jQj and Stack(wij)

A. INITIALIZATION

(a) For i = 1; : : : ; jQj read root node of the SB-tree

for i-th word in Q and place its entries in Stack(i). If

there is no SB-tree for particular word its list

numbers must be decoded and placed in stack as well

as leaf entries.

(b) Initialize PosZones to be actual.

B. NORMALIZATION

(a) Delete all entries from word stacks which

intersects no PosZones extents.

(b) If for text number t all word stacks have entry of

the form (t; t; 0;NULL) then add t to the result set of

the query. Delete this entry from stacks and adjust

PosZones to be actual.

(c) If all stacks are empty then end of the algorithm.

C. SEARCH AND RETRIEVAL

(a) Let (tmin; tmax) be the top entry of PosZones.

Choose word stack which top entry extent (t0; t1)

satisfy t0 < tmin < t1; and value of dead space is

maximal.

If there is no such stack choose from ones satisfying

t0 _ tmin _ t1.

(b) Read child node of the top entry of chosen stack

and place its entries instead into stack.

(c) Adjust PosZones and go to the step 2.

Actual state of PosZones is defined in the following

way further an algorithm for computing

OrPosZones(i) is described.

1. Clear OrPosZones(i), initialize EStack(wij) to be

Stack(wij) for every j.

2. Find the tops of EStack(wij) with minimal left

border. If stacks are empty then we have reached end

of the algorithm.

3. Pop found extent form it’s EStack and push it into

OrPosZones(i) if OrPosZones(i)as it is empty.

VI. EXPECTED OUTPUT

Fig 2: Expected Result

International Journal for Research in Engineering Application & Management (IJREAM)
ISSN : 2494-9150 Special Issue-01, MAR 2016.

IJREAMSP01022 www.ijream.org © 2016, IJREAM All Rights Reserved.

VII. CONCLUSTION

Hence the above project implemented is basically for

the group of people whose personal computers

consist of plenty of files including personal as well as

official. It can also be used at various work places

where data sharing is important for completion of

group related works (for example Large Scale

Projects, School, Colleges).

Also this project have implemented client server

model wherein the server would be the parent system

and the clients connected to server system are called

as offspring’s of parent system. Here clients can view

each other’s data but cannot overwrite it, where as

the server can perform action.

REFERENCES

[1] Technology of The Institute of Computing Technology

of Chinese Academy of Sciences, “FirteX-High

Performance Search Platform”,

[2] Y. MATSUBARA and I. KOBAYASHI, “Development

of a Desktop Search System Using Correlation between

User’s Schedule and Data in a Computer,” Proc. the 2007

IEEE/WIC/ACM International Joint Conference on Web

Intelligence and Intelligent Agent Technology.

[3] Wei Lun Huang, Tzao Lin Lee and Chiao Szu Liao,

“Desktop Search in the Intranet with Integrated Desktop

Search Engines,” Proc. The 13th IEEE Asia-Pacific

Computer Systems Architecture Conference (ACSAC

2008), IEEE Press, Aug. 2008, pp. 1-4.

[4] S. Cohen, C. Domshlak and N. Zwerdling, “On Ranking

Techniques for Desktop Search,” ACM Transactions on

Information Systems, vol. 26, Mar. 2008, pp. 1183-1184.

[5] J. Gaugaz, S. Costache, P. Chirita, C. S. Firan1 and W.

Nejdl, “Activity Based Links as a Ranking Factor in

Semantic Desktop Search,” Proc. Latin American Web

Conference 2008(LA-Web 2008), IEEE Press, Oct. 2008,

pp. 49-57.

[6] S. Chernov, “Task Detection for Activity-based

Desktop Search,” Proc. the 31st annual international ACM

SIGIR conference on Research and Development in

Information Retrieval (SIGIR 2008), ACM New York, Jul.

2008, pp. 894-894.

[7] C. Fluit, “Autofocus: Semantic Search for the Desktop,”

Proc. the 9th International Conference on Information

Visualisation (IV 2005), London, IEEE Press, Jul. 2005

[8] P. A. Chirita, R. Gavriloaie, S. Ghita, W. Nejdl and R.

Paiu, “Activity based Metadata for Semantic Desktop

Search,” Proc. the 2nd Annual European Semantic Web

Conference (ESWC 2005), Springer Berlin, May. 2005, pp.

439-454.

[9] P. A. Chirita, S. Costache, W. Nejdl and R. Paiu,

“Beagle++: Semantically Enhanced Searching and Ranking

on the Desktop,” Proc. the 3rd Annual European Semantic

Web Conference (ESWC2006), sSpringer Berlin, Jun.

2006, pp. 348-362.

