
International Journal for Research in Engineering Application & Management (IJREAM) 
ISSN : 2494-9150    Vol-02, Issue 01, APR 2016. 

IJREAMV02I01867 www.ijream.org © 2016, IJREAM All Rights Reserved.  

1

 

Abstract - In this paper we present the multi node installation of Hadoop cluster. We use this cluster to build an 

application which performs indexing and searching on large dataset. We use Apache Lucene framework alongside 

Hadoop to build a distributed search system. In today’s world where information evolves rapidly, the huge growth of 

data across different geographical regions demands a system that assists fast parsing for the retrieval of meaningful 

results. A searchable index for distributed data would go a long way towards speeding the process. The searching on the 

data residing in Hadoop Distributed File System using indexing created by the Apache Lucene library. These indexes are 

then processed using Hadoop. To store very large datasets reliably Hadoop Distributed File System is designed.  It is also 

able to stream those data sets at high bandwidth for the purpose of user applications. Distributed file system critically 

requires metadata management. All metadata is managed by  a single server in the HDFS architecture, while file data is 

stored by a number of data servers.   
 
Keywords — Apache Lucene, Dataset, Hadoop, HDFS, Master, Slave.  

I. INTRODUCTION
1
 

Hadoop is an open source framework owned by Apache 

written in entirely Java. It uses simple programming models 

that allow distributed processing of large sets of data within 

clusters of computers. An application of Hadoop framework 

works in an environment which provides distributed storage 

and computation across clusters of computers. Hadoop is 

designed so as to scale up from single server to thousands of 

machines, which individually offers local storage and 

computation. In the past few years, data is increasing rapidly 

such as like Facebook, Twitter, Google, Yahoo!, web crawler, 

etc. Usage of data exceeds beyond Tera bytes so to maintain 

such type of data the traditional databases are not sufficient to 

store data.  

 

The Hadoop Distributed File System is a distributed (HDFS) is 

a distributed file system designed to run on commodity 

hardware. It has to runs on commodity hardware. The Hadoop 

Distributed File System is fundamentally similar to the existing 

distributed file systems. HDFS differs from other distributed 

file systems in that it is highly fault tolerant and it can be 

deployed on low cost hardware. High throughput access is 

provided by HDFS to data applications which are also suitable 

 
 

for large dataset applications. HDFS architecture consists of 

NameNode, DataNode and HDFS Client. The figure below 

shows the HDFS architecture. [1][5] 

 

Figure 1: HDFS architecture 

Lucene is a search engine library which belongs to Apache 

organization. It is free and open source software which is used 

to retrieve information. It is purely developed in Java. Search 

functionality is being added fast and furiously and since an 

open source nature is a big part of Hadoop ethos, the 

technology of choice in this case is often open source Lucene 

search engine. Hence indexing and searching on HDFS is done 

using Apache Lucene. It takes all the documents, splits them 

into words and then builds an index for each work. Since the 

index is an exact string-match, unordered it can be extremely 

fast. [2] 

An Application Based on Hadoop Distributed File 

System 

1
Mirza Anjum, 

2
Shaikh Asma, 

3
Shaikh Sana, 

4
Shaikh Ishrat, 

5
Prof. Y. S. Pagar, 

1,2,3,4
BE-CSE Student, 

5
Assistant Professor 

1,2,3,4,5
People’s Education Society’s College of Engineering, Aurangabad, Maharashtra, India. 

1i.anjummirza@gmail.com, 2asma.shaikh.171294@gmail.com, 3sana.shaikh.25894@gmail.com, 
4
ishratshaikh8@gmail.com, 

5
yspagar@yahoo.com 



International Journal for Research in Engineering Application & Management (IJREAM) 
ISSN : 2494-9150    Vol-02, Issue 01, APR 2016. 

IJREAMV02I01867  www.ijream.org © 2016, IJREAM All Rights Reserved.  

2

II. EXISTING SYSTEM 

Microsoft SQL Server supports full text search since 1998, 

when version 7.0 was released. It is inbuilt  feature of SQL 

Server, advantages of integration are provided by the system 

with RDBMS . 

The main difference is within primary index structure. 

Unvarying database index is built on the whole field value, full 

text search  of the procedure uses inverted index in its place. 

 FTS goes through indexing the individual words within a text 

field in order to make searching through many records rapid 

Which is called tokenization .String search is still required 

within the field .So some of the organizations which are 

specific  make available such benefits as “precision vs recall 

tradeoff”, high search performance, stemming, ranking and 

many others usual FTS features. Index is created before  

starting searching, and after that indexes are updated 

automatically which are handled by SQL Server. 

The users and applications run Full text queries alongside  

character based data which are present in SQL servers tables 

.Before running any full text queries on a table full text index 

must be created on the table by the database administrator 

.One or more character –based columns in the table are 

comprised  in the full text index. These columns can have any 

of the following data types:  FILESTREAM and 

char, varchar, nchar, nvarchar,text, , image, xml, 

or varbinary(max)  Each full-text index indexes one or more 

columns from the table, Specific language can be used by 

individual column.  

Linguistic searches are performed by full-text queries against 

text data in full-text indexes. The words and phrases are 

operated based on rules of a particular language such as 

English or Japanese. Full-text queries contain simple phrases 

or multiple forms of phrases. Documents are returned by full-

text query that contain at least one match (also known as a hit). 

A match is displayed when a document which is targeted that 

contains all the terms that is specified in the full-text query, 

and meets any other search conditions, such as the distance 

between the matching terms. 

1) Full-Text Search Queries 

After columns have been added to a full-text index, users and 

applications can run full-text queries on the text in the 

columns. These queries can search for any of the following: 

• One or more specific words or phrases (simple term) 

• A word or a phrase where the words begin with 

specified text (prefix term) 

• Inflectional forms of a specific word (generation 

term) 

• A word or phrase close to another word or phrase 

(proximity term) 

• Synonymous forms of a specific word (thesaurus) 

• Words or phrases using weighted values (weighted 

term) 

Full-text queries are not case-sensitive. For example, searching 

for "Aluminum" or "aluminum" returns the same results. 

Full-text queries use a small set of Transact-SQL predicates 

(CONTAINS and FREETEXT) and functions 

(CONTAINSTABLE and FREETEXTTABLE). However, the 

search goals of a given business scenario influence the 

structure of the full-text queries. For example: 

e-business—searching for a product on a website: 

SELECT product_id  

FROM products  

WHERE CONTAINS(product_description, ”Snap Happy 

100EZ” OR FORMSOF(THESAURUS,’Snap Happy’) 

OR ‘100EZ’)  

AND product_cost < 200 ; 

Recruitment scenario—searching for job candidates that 

have experience working with SQL Server: 

SELECT candidate_name,SSN  

FROM candidates  

WHERE CONTAINS(candidate_resume,”SQL Server”) 

AND candidate_division =DBA; 

III. PROPOSED SYSTEM 

Distributed search system using Lucene library 

Indexing and searching on a HDFS is done using Apache 

Lucene. Lucene is a library which uses inverted full-text index 

technique. This implies that it takes as input all the documents, 

and splits them into words. It then builds an index for each 

word. Since the index is an exact string-match, unordered, it 

can extremely perform fast searching. A big index is created by 

Lucene. There are two entities present inside index which is 

work id and number of documents where the word is present. It 

also contains the position of words in those documents. So 

when a query is fired to search a single word the indexes are 

searched. The time complexity for this is O (1). Different 

algorithms are used to rank the results. In order to process the 

multi word query, it just takes the intersection of the set of files 

where the words have their location. Thus Lucene is very fast. 

We built a distributed search system using Hadoop and Lucene 

library. A searchable index for distributed data would go a 

long way towards speeding the process. The searching on the 

data residing in HDFS is performed using indexing created by 

Lucene library. These indexes are then processed in Hadoop. 

[3][4]. 

  



International Journal for Research in Engineering Application & Management (IJREAM) 
ISSN : 2494-9150    Vol-02, Issue 01, APR 2016. 

IJREAMV02I01867 www.ijream.org © 2016, IJREAM All Rights Reserved.  

3

 
 

Our system can be used to perform searching on Big Data. The 

analyst can be benefited from our system as we provide a 

search interface to dig in a large dataset. The client, after 

performing search, is provided with all the matching records 

from the large dataset within a minute. Our system is suitable 

to work in organizations who deal with big data, where the 

analysts need to analyze the data like to find the number of 

records matching a particular keyword, to list and process 

them, etc. 

IV. CONCLUSION 

Deploying large datasets on HDFS can be easily configured 

commodity hardware, hence cutting down the cost of buying 

expensive servers or contracting cloud service providers for a 

PaaS setup. Using HDFS as a base, we can eliminate issues 

arising from lack of server scalability and infrastructure cost. 

Down times can be cut down significantly by the high 

availability features present in the system. By using a web 

interface the need for platform dependent applications is 

eliminated, allowing users to access the system on any machine 

within its organization’s campus. This also eliminates the users 

need to understand the functionality involved in the backend. 

In our system we have added Lucene’s index search capability 

into Hadoop. Lucene enables us to use the RAM directory for 

indexing and searching. The proposed system creates indexes 

for the file residing in HDFS and performs search using those 

indexes. The client has provided with a search interface. All 

the matching records are displayed in the browser. Thus, our 

system is a fast and efficient search engine system that 

provides better searching functionality than the traditional 

RDBMS approach. 

 

We can safely conclude that this model is a successful 

implementation of the HDFS. 

V. FUTURE DEVELOPMENT SCOPE 

The proposed system is an example of how the search 

functionality can be achieved through the combination of 

Hadoop and Lucene. The indexing and searching power of 

Lucene is combined with Hadoop’s processing power. The 

Hadoop cluster we implemented consists of two nodes. To 

achieve faster processing and scalability, more data nodes can 

be added into the cluster. Lucene works with all kind of textual 

files. In our system we use CSV format files. Our system can 

work with different textual format. The dataset used in the 

proposed system consists of 15 columns and upto 44, thousand 

records. The dataset can be extended without any limit for 

performing search on larger datasets. In order to fully evaluate 

the expected benefits of the proposed system there is a need to 

implement this system in real environment. 

 

The proposed system can be improvised by using better system 

configurations having larger RAM, more processor speed, 

more disc space, etc. The system proposed has the potential to 

be widely applicable for future use. 

ACKNOWLEDGMENT 

We would like to thank all members of the HDFS team at 

Yahoo! present and past for their hard work building the file 

system. We would like to thank all Hadoop committers and 

collaborators for their valuable contributions. 

REFERENCES 

[1] “A study on Digital Library using Hadoop Distributed File 

System”, IJIRAE 2015 

[2] “The Alexandria Digital Library Architecture”, ECDL paper 

[3] “The Hadoop Distributed File System paper”, IEEE 

[4] “Hadoop in Action” Chuck Lam 

[5] “Lucene in Action 2nd Edition”, Michael McCandless. 


