
International Journal for Research in Engineering Application & Management (IJREAM) 

ISSN : 2454-9150    Vol-03, Issue 04, May 2017 

 

17 | IJREAMV03I042809 www.ijream.org © 2017, IJREAM All Rights Reserved. 

 

 

Abstract Security is a critical part of your Web applications. Web applications by definition allow users access to a central 

resource the Web server and through it, to others such as database servers. By understanding and implementing proper 

security measures, you guard your own resources as well as provide a secure environment in which your users are 

comfortable working with your application. Web application security is a branch of Information Security that deals 

specifically with security of websites, web applications and web services. Web Security blocks web threats to reduce malware 

infections, decrease help desk incidents and free up valuable IT resources. It has more than 100 security and filtering 

categories, hundreds of web application and protocol controls, and 60-plus reports with customization and role-based access. 

You can easily upgrade to Web Security Gateway when desired to get social media controls, SSL inspection, data loss 

prevention (DLP) and inline, real-time security from Websense ACE (Advanced Classification Engine). 

Keywords:  Data mining, Input validation vulnerabilities, software security, Web vulnerability security, vulnerability detection, 

advanced confusion matrix.

I. INTRODUCTION
1
 

A. WEB APPLICATION SECURITY 

Although a large research effort on web application security 

has been going on for more than a decade, the security of web 

applications continues to be a challenging problem [1]. An 

important part of that problem derives from vulnerable source 

code, often written in unsafe languages. Source code static 

analysis tools are a solution to find vulnerabilities, but they 

tend to generate false positives, and require considerable 

effort for programmers to manually fix the code [2]. We 

explore the use of a combination of methods to discover 

vulnerabilities in source code with fewer false positives 

[6][7][5][3]. We combine taint analysis, which finds 

candidate vulnerabilities, with data mining, to predict the 

existence of false positives. Given this enhanced form of 

detection, we propose doing automatic code correction by 

inserting fixes in the source code [2][3][8]. web applications 

have become increasingly popular for delivering security 

critical services Because web applications are exposed to 

various threats and attacks, numerous tools, including 

 
 

commercial tools and open source software, have been 

developed for detecting web application vulnerabilities, 

called web vulnerability scanner [3]. 

B. WEB VULNERABILITY 

Vulnerability is a hole or a weakness in the application, which 

can be a design flaw or an implementation bug, that allows an 

attacker to cause harm to the stakeholders of an application. 

Stakeholders include the application owner, application users, 

and other entities 

that rely on the application. The term "vulnerability" is often 

used very loosely. The Top Ten Vulnerabilities [1] that are 

updated by Open Web Application Security Projects are: Sql 

Injection: Injection flaws, such as SQL, OS, and LDAP 

injection occur when untrusted data is sent to an interpreter as 

trick the interpreter into executing unintended commands or 

accessing data without proper authorization. 

II. LITERATURE SURVEY 

A. Detection of Vulnerabilities by Security Scanner 

Security scanners identify defects and weaknesses by a 

collection of signatures of known vulnerabilities. These 

signatures are updated regularly as new vulnerabilities are 

Analyzing & Defining Web Application Vulnerabilities 

With Dynamic Analysis And Web Mining 

1
Deepak B. Jadhav, 

2
Sachin K. Sanap, 

3
Ramesh C. Ghuge, 

4
Deore Somnath 

1,2,3,4
UG Student, Department Of Computer Engineering, Late. G.N. Sapkal Collage of Engineering, Nashik, 

Maharashtra, India. 

1
deepakjadhav@gmail.com, 

2
sanapsachin72@gmail.com, 

3
rameshghuge300@gmail.com, 

4
somnath.sd23@gmail.com 



International Journal for Research in Engineering Application & Management (IJREAM) 

ISSN : 2454-9150    Vol-03, Issue 04, May 2017 

 

18 | IJREAMV03I042809 www.ijream.org © 2017, IJREAM All Rights Reserved. 

 

discovered. In the search for vulnerabilities like XSS and 

SQL injection, the scanners execute lots of pattern variations 

adapted to the specific test in order to discover the 

vulnerability. There are two main approaches to testing web 

applications for vulnerabilities: “white box” and “black box”. 

The “white box” approach consists of the analysis of the 

source code of the web application. Static code analysis is a 

type of white-box analysis. This can be done manually or by 

using code analysis tools like FORTIFY, Pixy, Code Secure, 

etc. These static analyzer tools analyze source code to detect 

vulnerabilities, such as SQL injection and cross-site scripting. 

The black-box vulnerability scanner without knowing the 

internal design of the web application uses fuzzy techniques 

over the web HTTP requests, simulates numerous scenarios 

such as hackers‟ intentional attacks or general users‟ 

inadvertent attacks, and provides an automatic way to search 

for vulnerabilities, avoiding the repetitive and tedious task of 

doing hundreds or even thousands of tests by hand for each 

vulnerability type. There are many commercial web 

vulnerability scanners for black-box testing such as Acunetix 

Web Vulnerability Scanner, HP WebInspect [8], IBM 

AppScan [9]. The testing results of vulnerabilities for web 

applications are quite different from scanner to scanner. 

According to the survey presented in, black-box testing is the 

second most used technique to evaluate the effectiveness of 

security. In our experiments, we use our proposed approach 

to evaluate four popular “black box” commercial scanners, 

AppScan, WebInspect, Paros. 

B. Web Vulnerability Scanner Evaluation Criteria 

Vulnerability scanners are considered as a solution for 

detecting vulnerabilities and security threats in web 

applications. Among the studies focusing on tools 

evaluations, the Web Application Security Consortium 

proposed "Web Application Security Scanner Evaluation 

Criteria (WASSEC)"[25] project to provide a set of detailed 

evaluation criteria and a framework for conducting a  formal 

scanner evaluation. The goal of the WASSEC is that for the 

tools given to users they need to conduct a solid evaluation 

and make their own informed decision on which scanner(s) 

best meet their needs. P.E. Black et al. proposed guidelines 

for describe the functional specifications of Source Code 

Security Analysis Tool and Web Application Security 

Scanner [6]. Through the development of tool functional 

specifications, test suites and tool metrics, the NIST Software 

Assurance Metrics and Tool Evaluation (SAMATE) project 

aims to better quantify the state of the art for different classes 

of software security assurance tools. The documents 

constitute a specification for a particular type of software 

assurance tool, which is referred to here as a web application 

security scanner. By examining the steps in scanning 

processes, we can reasonably assume that costs of 

vulnerability scanner include construction cost, operation 

cost, and analysis cost, with operation and analysis ones being 

the main parts in cost evaluation. These processes are 

generally labor-intensive and often involve substantial human 

resources, including developers, domain experts, and security 

experts. There are several studies focusing on reducing cost in 

vulnerabilities detection, such as [22][12]. However, the issue 

of redundant alerts have not been considered in the previous 

research. In general, when a certain defect is found 

repeatedly, the developers would spend double effort to solve 

it. In this paper, we proposed a cost-effective evaluation 

approach to evaluate vulnerability scanner by considering 

issue of redundant alerts [7]. 

C. Confusion Matrix 

Previous research provides relative benchmarking measures 

for improvement and tuning of prediction errors, false 

positive and true positive, despite the definition of the 

benchmark measures is different. To compare the 

effectiveness of tools that implement different vulnerability 

detection approaches, Van Rijsbergen proposed the 

Fmeasured method that can be applied to characterize 

vulnerability detection tools. In fact, it represents the 

harmonic mean of two very popular measures (precision and 

recall) [8]. 

III. SYSTEM ARCHITECTURE 

we implement the Web Vulnerability Scanner Testbed 

(abbrev. W-VST) to evaluate the performance of web 

vulnerability scanners based on our proposed approach. The 

W-VST is a web-based application and developed in JSP and 

MySQL. The basic idea of W-VST is to apply our cost-

effective evaluation approach and support the security 

engineers to evaluate vulnerability scanners. In W-VST, we 

propose three vulnerable applications, WebGoat, WordPress, 

and, WackoPicko, as testing targets based on OWASPBWA 

project. OWASPBWA is a collection of vulnerable web 

applications [1][5][10]. 

A. DATA FLOW DIAGRAM (DFD): 

a) Level 0 : Context 

 



International Journal for Research in Engineering Application & Management (IJREAM) 

ISSN : 2454-9150    Vol-03, Issue 04, May 2017 

 

19 | IJREAMV03I042809 www.ijream.org © 2017, IJREAM All Rights Reserved. 

 

Level 0 shows the over view of the software. The client will 

provide url of the website to be tested and what kind of test to 

be performed on it. The system will build the crafted request 

with the help of test criteria‟s. The build crafted request is 

send to the server and scanner analyzes the response return by 

the web server and report will be send to client. 

b) Level 1: System Architecture 

 

Level 1 is basically the architecture of the system i.e software 

.It has three module i.e. GUI Module Vulnerability Test 

Module, Website Client Module. 

c) Level 2: GUI MODULE 

 
 

Graphical User Interface Module is basically a user interface 

of the software where user will input the url of the website 

and test to be performed on it. After the test is completed the 

result is shown here[6][8][15]. 

d) VULNERABILITY TEST MODULE 

 
 

Vulnerability Test Module is a module in which crawling of 

the website, preparing test cases and analyzing the response 

that is sent by the web server is done. For eg. To check 

whether SQL injection attacks are possible, the vulnerability 

scanners send modified requests and analyze the responses 

returned by the server [3][4][8][9]. A server may respond 

with a rejection page or with an execution page. A rejection 

page corresponds to the detection of syntactically incorrect or 

invalid inputs [12][13][14]. An execution page is returned by 

the server as a consequence of a successful execution of the 

request. This page legitimate use of the web site, but may also 

result from a successful exploitation of an injection 

attack[12]. 

e) WEB-CLIENT MODULE 

 
In this module, the scanner will build the crafted HttpRequest 

with the help of test cases and it is sent to web server and in 

return web server sends response to Web-Client Module and 

it than parses the response and sends the parse response to the 

Vulnerability Test Module where the response is analysed [8]. 



International Journal for Research in Engineering Application & Management (IJREAM) 

ISSN : 2454-9150    Vol-03, Issue 04, May 2017 

 

20 | IJREAMV03I042809 www.ijream.org © 2017, IJREAM All Rights Reserved. 

 

IV. ALGORITHM 

1. Start 

2. Enter the URL. 

3. Select the type of vulnerability you want to scan for: 

Default: checks for sql injection and cross site scripting 

both. 

Sql Injection: checks for sql injection. 

XSS: checks for cross site scripting. 

4. Start scanning. 

5. Check for the given conditions according to the selected 

Vulnerability scan. 

6. After observing the conditions of the selected vulnerability 

prepare a report. 

IV. RESULT ANALYSIS 

A. URL Input: 

 

Figure. 1 URL Input 

This is the home page of application. In this as seen there are 

different modules for checking vulnerabilities and one URL 

input section. Then give the input website URL to be tested 

for the different vulnerabilities types. 

B. Internal URL in order of size: 

 
Figure. 2 Internal URL in order of size 

 

The module Internal URL in order of size gives the details of 

the internal URL of website with the size.  This information 

may be vulnerable so one must provide the security to this. 

 

C. Parameterized URL 

 
Fig. 3 Parameterized URL 

 

In the parameterized URL module there are five records of 

vulnerabilities we can get and last one is the report section 

where we can have the all five records with number of 

vulnerabilities possible. So, this module is useful to check if 

there any SQL injections and XSS are possible or not. 

 

D. Scan Domain: 

 
Figure 4 Scan Domain 

The scan domain module have seven records of 

vulnerabilities. In get port info the port information can get if 

no security is provided. And Registrar info block gives all the 

information regarding domain, hostname, storage server, 

registration date, expiry date, updated on. Etc. 

 



International Journal for Research in Engineering Application & Management (IJREAM) 

ISSN : 2454-9150    Vol-03, Issue 04, May 2017 

 

21 | IJREAMV03I042809 www.ijream.org © 2017, IJREAM All Rights Reserved. 

 

V. CONCLUSION 

The relationship between detected and actual vulnerabilities is 

more complex than previously known, and it often requires 

many domain experts to participate in identifying the 

redundant detections. In this paper, we proposed a cost-

effective approach to evaluating the performance of Web 

vulnerability scanner which we applied to our evaluation 

testbed. All detected and actual vulnerabilities can be handled 

in our proposed approach. Two experiments are performed 

with our testbed. The experimental results show that our 

approach can verify the performance in vulnerability scanner 

evaluation. In the near future, we will continue to increase 

features of scanner evaluation for the purpose of better 

simulating hacker‟s behaviors. Meanwhile we will also 

develop new evaluation techniques to shorten the time needed 

for scanner evaluation. In the future studies we will also 

explore the effect of integrating multiple detection results by 

several tools, which may further increase the accuracy. 

 

ACKNOWLEDGMENTS 

It gives us great pleasure in presenting the Result Paper on 

„ANALYSING AND DEFINING WEB APPLICATION 

VULNERABILITIES WITH DYNAMIC ANALYSIS AND 

WEB MINING.‟ 

I would like to take this opportunity to thank my internal 

guide Prof. R. D. More for giving me all the help and 

guidance I needed. I am really grateful to them for their kind 

support. Their Valuable suggestion were very helpful 

REFERENCES 

[1] “Acunetix Ltd, Web Vulnerability Scanner”, 

http://www.acunetix.com/vulnerability-scanner/[Last accessed 

31 May, 2014] 

[2] C. J. van Rijsbergen, Information Retrieval, Butterworth, 

1979. 

[3] Confusion Matrix, http://en.wikipedia.org/ 

wiki/Confusion_matrix. [Last accessed 31 May, 2014] 

[4] D. Stuttard and M. Pinto, The Web Application Hacker‟s 

Handbook: Finding and Exploiting Security Flaws. Wiley, 

2007. 

[5] F. Yu, M. Alkhalaf, and T. Bultan, “Stranger: An 

automata-based string analysis tool for php,” in TACAS, 

2010, pp. 154–157. 

[6] Gray, J. (Ed.), "The Benchmark Handbook", Morgan 

Kaufmann Publishers, San Francisco, CA, USA, 1993. 

[7] “HP FORTIFY”, http://www8.hp.com 

/us/en/softwaresolutions/software.html?compURI=1337262#.

UYKTGaLAdmx 

[8] “HP WebInspect”, https://download.hpsmartupdate.com 

/webinspect/. 

[9] “IBM AppScan”, http://www- 03.ibm.com/ 

software/products/us/en/appscan,  

[10] J. Fonseca, M. Vieira, and H. Madeira, “Testing and 

comparing web vulnerability scanning tools for sql injection 

and xss attacks,” in PRDC, 2007, pp. 365–372. 

[11] L. Gordon, M. Loeb, W. Lucyshyn, R. Richardson, 

“Computer crime and security survey”, Computer Security 

Institute, 2006. 

[12] L. Deepak Subramanian, Ha Thanh and L. Peter, Kok 

Keong, “Fuzzy heuristic design for diagnosis of web-based 

vulnerabilities,” in Fourth International Conference on 

Internet Monitoring and Protection, 2009, pp. 103–108. 

[13] Larry Suto, Analyzing the Accuracy and Time Costs of 

Web Application Security Scanners, San Francisco, 2010, 

http://ha.ckers.org/files/Accuracy-and-Time-Costs-of-Web-

App- Scanners.pdf, [Last accessed 31 May, 2014] 

[14] N. Antunes and M. Vieira, “Benchmarking vulnerability 

detection tools for web services,” in ICWS, 2010, pp. 203–

210. 

[15] N. Jovanovic, C. Krugel, and E. Kirda, “Pixy: A static 

analysis tool for detecting web application vulnerabilities 

(short paper),” in IEEE Symposium on Security and Privacy, 

2006, pp. 258–263. 


