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ABSTRACT-In this paper a variationally consistent polynomial shear deformation theory is presented for the free

vibration of thick isotropic square and rectangular plate. In this displacement based theory, the in-plane displacement

field use parabolic function in terms of thickness coordinate to include the shear deformation effect. Governing

equations and boundary conditions of the theory are obtained using the principle of virtual work. Results of frequency

are obtained from free vibration of simply supported isotropic square and rectangular plates and compared with those

of other refined theories and frequencies from exact theory.
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I. INTRODUCTION

Plates are the basic structural components that are widely
used in various engineering disciplines such as aerospace,
civil, marine and mechanical engineering. The transverse
shear and transverse normal deformation effects are more
pronounced in shear flexible plates which may be made up
of isotropic, orthotropic, anisotropic or laminated
composite materials. In order to address the correct
structural behavior of structural elements made up of these
materials; development of refined theories, which take into
account refined effects in static and dynamic analysis of
structural elements, becomes necessary. The study of plate
vibration dates back to the early eighteen century, with-the
German physicist, who observed the nodal patterns for a
flat square plate. Since then there has been a tremendous
research interest in the subject of plate vibrations. Several
thin plate vibration solutions based on Kirchhoff’s plate
theory are available in the literature. The classical plate
theory based on Kirchhoff's hypothesis [1] is not adequate
for the analysis of shear flexible plates due to the neglect of
transverse shear deformation and the rotary inertia in the
theory; as a consequence, it under predicts deflections and
over predicts all the vibration frequencies for thick plates,
and the higher frequencies for the thin plates. The most
suitable starting point for the analysis of both thin and thick
plates seems to be a theory in which the classical
hypothesis of zero transverse shear strains is relaxed.

At first, Reissner proposed that the rotations of the normal
to the plate mid-surface in the transverse plane could be
introduced as independent variables in the plate theory.
Reissner has developed a stress based theory which
incorporates the effect of shear. Mindlin [2] simplified
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Reissner’s assumption that normal to the plate mid-surface
before deformation remains straight but not necessarily
normal to the plate mid-surface after deformation and the
stress normal to the mid-surface is disregarded as in the
case of classical plate theory of Kirchhoff. Mindlin
employed displacement based approach. In Mindlin’s
theory, transverse shear stress is assumed to be constant
through the thickness of the plate, but this assumption
violates the shear stress free surface conditions. The theory
includes both the shear deformation and rotary inertia
effects. Both effects decrease the frequencies. There are
still other effects not accounted for by the Mindlin are
stretching in the thickness direction and the warping of the
normal to the mid-plane, which are more important in case
of thick plates.

Mindlin’s theory satisfies constitutive relations for
transverse shear stresses and shear strains by using shear
correction factor. The value of this factor is not unique but
depends on the material, geometry, loading and boundary
condition parameters. Wang discussed these theories in
detail and developed the relationships between bending
solutions of Reissner and Mindlin plate theory. Usually, in
two dimensional plate theories, displacement components
are considered power series expressions in thickness
coordinate (z). Depending on the number of terms retained
in the power series expressions, various higher order
theories for homogeneous and laminated plates can be
developed Reddy [3,4] utilize some simplification of the
generalized displacement function.The simplified higher
order theories, generally third order shear deformation
theories give parabolic variation of transverse shear stress
through the thickness of the plate satisfying the shear stress
free boundary conditions on the top and bottom surfaces of
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the plate. Thus, these theories do not require shear
correction factors. Levinson formulated a theory based on
displacement approach which does not require shear
correction factor. However, Levinson’s theory is
variationally inconsistent since the field equations and
boundary conditions are not derived using principle of
virtual work. Srinivas et al. [5] developed exact elasticity
solutions for the flexure and free vibration of simply
supported homogeneous, isotropic, thick rectangular plates.
The exact elasticity solutions play important role in
validation of results of two dimensional thick plate theories.
surveyed plate theories particularly applied to thick plate
vibration problems. In the development of such theories use
of polynomials, trigonometric functions, hyperbolic
functions and exponential functions in terms of thickness
coordinate is widely and wisely made by

Ghugal and Sayyad [6,7] have used trigonometric shear
deformation theory for the free vibration analysis of
orthotropic plates and a variationally consistent
trigonometric shear deformation theory for free vibration of
homogenous, isotropic plate is developed. It has four
variables and includes effects of transverse shear and
transverse normal strain. The theory satisfies the tangential
traction free boundary conditions (zero shear stress
conditions) on the top and bottom surfaces of the plate. The
primary objective of this investigation is to present the
frequencies of flexural mode, thickness shear and thickness
stretch modes of free vibration of thick plates.

Il. THEORETICAL FORMULATION

2.1 Laminated plate under consideration

Consider a rectangular laminated plate composed of
orthotropic layers as shown in figure 1.The plate is
assumed in Cartesian coordinate (x,y,z) system with origin
0 .it is convenient to take the y-plane of the coordinate
system to the undeformed middle taken to be positive in a
downword direction from the middle plane.

2.2 Displacement field.

For the bending analysis, the displacement field at a point
in the laminated plate is expressed as:-

a
[
) (—— X,
hi2
hi2
JAY L 1" layer
L— K™ layer
z’ W ]\Jﬂl Iayer

Figurel: plate geometry and coordinate System
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Where U,V,W are the in-plane displacement of the mid-
plane in x,y and z direction respectively W,, W,, W, are the
shear rotations

2.3 Strain-Displacement Relationship

For the small plate deformation the six strain component
are plane of the laminate.The z-axis is

(5X , gy E7, ny Xz 7/yz) and three

displacement component  (U,V, W) are related
according to the well-known liner kinematic relation.
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2.4 Stress — Strain Relationship

The stress component associated with strain is given
component by eg. (3) considering transverse shear
deformation in the plate coordinate can be expressed as
follows:-

ox | [Qq @, 0 0 0 |&
Oy | |Qq Qp 0 0 0 ey
=l 0 0 Qs 0 0 linyr @
v 0 0 0 Qg 0 |y,
e L0000 oy,
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Where Qij are the transformed elastic coefficient,

By M2
T 21 ', T 1 21

1 “Hip# 12 “Hi#
£2 (4)
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Where E;, E, are the elastic moduli, p;, and p,; are
Poisson’s ratios and Giy, Gy, Gi3 are the shear moduli of
the material.

2.5 Governing equation and boundary conditions.

Governing equation and boundary conditions are obtained
using principal of virtual work.

ab%
[ [ ]
00 b

+Tyz2 0 xz + Tyz 6y yz )dxdydz

(oxdey + Gy(?gy + Txy57xy
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inserting strains from Eq.(2) and stress from Eq.(3) into
Eq.(5). Integrating by parts and collecting coefficient of

ou,, 0V,, OW,, OW,, OW, the following governing equation

are obtain inserting stress resultant in terms of unknown
variables
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Similarly for density of mass component are as follows:-
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3. Analysis of Laminated Plates.

The following middle surface displacement function are
assumed which satisfies the boundary condition and the
governing equation of simply supported laminated
composite plates;

uo(x, Y) = Umpn Cos axsin By,

vo(x, Y) = Vqn Sin axcos By,

wo(x, Y) = W sin axsin gy, @

wl(x, Y) = W Sin axsin gy,

Wy (X, ¥) = W sin axsin gy,

Where oz=%andﬂ=n—brl

Substitutions of solution from given by Eqg. into governing

equation (5)-(6) result into system of the algebraic
equation which can be written into matrix form as follows:

Ky ko kKiz kg Kis

Ko Koo kpz kog kog

k3p k3o K3z K3y Kag |-
Ko« Ko Kpa ko, k

41 Kap Kaz Kag Ky
Ksg Ksp kg3 kggq Kgg
M1 Mo Mg My Myg
, Mip My, Moz My, Myg

| Mg Mgy Mgz Mgy Mgg
Mg1 Myp Myz My Myg
M5y Mgy Mgz Mg, Mgg |
Umn 0

Vmn 0

Wmn =40

Wmn 0

Wmn 0

In a compact equation can be written as follows
(K- &’ [M]){A} = {0} Where
[k],[M],{A} and @ are the stiffness matrix, mass matrix,

amplitude vector and natural frequencies, respectively. The
element of stiffness matrix [K] are defined as follows;

kg = Aga” + Agg B2

k1o = (A1 + Agg)af

kyg = —Byya” — (By, +2Bgg)ap”
kyg = —Cp1a° = (Cyp +2Cgg)ap”
kys = —Dyya® — (Dy, +2Dgg)afs”
ko1 = (Ap + Agglaf

kpp = Agpf° + Aggar”

kpg = —(Bjp +2Bgg)a” f — Byy 5
kog = —(Cpp + 2C66)a2ﬂ —Cyp8°

2 3
kog = —(Dyp +2Dgg)a”™f —Dyy
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The element of mass matrix [M] are given as follows;

Myq =1A
My, =0
M3 =-IBa
My =-ICa
M;g =-1Da
Moy, =0
M22 = 1A
M,g =—I1Bj
Mo, =-ICB
Mog =-I1Dp

43 | IIREAMV031042889

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150  V/GIEOSIISSUES04NIUINIZ2007

Mg = ~1Ba
Mgy =~ 1B

Mg = (@ + ) IE + 1A
May = (a® + B2)IF + 1A

2 52
M35=(a +47)IH + 1A

Mgy = —ICa
Mgy = —IC/
M o = (e + B2)IF + 1A 9
43—(05 +87)IF+ 9)

2 .2
Mgy = (a” + BN +IA
2 2
M s = (a” + 5710 + 1A

M51 =—IDa

Mg, =-IDS
2 .2
M53=(a +B7)IH + 1A
2,2
M54:(a + )+ 1A

2 .2
Mgg = (a” + ) IL+ 1A

3.1 Numerical Result.

In this paper, free vibration analysis of simply supported
square and rectangular plates for aspect ratio (side to
thickness ratio, a/h) 10 is attempted.

The simply supported plates considered are composed of
isotropic material. The results obtained using trigonometric
shear deformation theory are compared with exact results
and with those of other refined theories available in
literature. Following non-dimensional form is used for the
purpose of presenting the results in this paper.

4.5
4 4
3.5
3 4
2.5 - —Y-
y Values
15 == Column
1
1 -
0.5 -
0 - — Y
0 20 40 60 80

Figure-1.3 shows that natural frequencies of isotropic rectangular

plate (b/a= \/E ) for aspect ratiol
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Figure-1.2 shows that natural frequencies of isotropic square plate
(b/a = 1) for aspect ratio 10

Table 1 Comparison of non-dimensional natural frequencies of
isotropic square plate (b/a = 1) for aspect ratio 10.

Ghugal
M,n Present | Exact and Reddy | Mindlin | CPT
[5] Sayyad | [4] [2] (1]

[6]

(1,1) | 0.0930 0.0932 | 0.0933 0.0931 | 0.0930 0.0955

(1,2) | 0.2220 0.2226 | 0.2231 0.2219 | 0.2219 0.2360

(1,3) | 0.4151 0.4171 | 0.4184 0.4150 | 0.4149 0.4629

(2,2) | 0.3406 0.3421 | 0.3431 0.3406 | 0.3406 0.3732

(2,3) | 0.5208 0.5239 | 0.5258 0.5208 | 0.5206 0.5951

(2,4) | 0.7453 0.7511 | 0.7542 0.7453 | 0.7446 0.8926

(3,3) | 0.6839 0.6889 | 0.6917 0.6839 | 0.6834 0.8090

(4,4) | 1.0783 1.0889 | 1.0945 1.0785 | 1.0764 1.3716

Table 2 Comparison of non-dimensional natural frequencies
of isotropic rectangular plate (b/a =) for aspect ratio 10

Ghugal and
M,n | Present | Exact | Sayyad [6] Reddy | Mindlin | CPT
[5] [4] [2 (11

(1,1) | 0.0704 | 0.0704 | 0.0705 0.0704 | 0.0703 0.0718
(1,2) | 0.1373 0.1376 | 0.1393 0.1374 | 0.1373 0.1427
(1,3) | 0.2424 0.2431 | 0.2438 0.2426 | 0.2424 0.2591
(1,4) | 0.3783 | 0.3800 | 0.3811 0.3789 | 0.3782 0.4182
(2,1) | 0.2012 | 0.2018 | 0.2023 0.2041 | 0.2012 0.2128
(2,2) | 0.2625 | 0.2634 | 0.2642 0.2628 | 0.2625 0.2821
(2,3) | 0.3596 | 0.3612 | 0.3623 0.3601 | 0.3595 0.3958
(2,4) | 04863 | 0.4890 | 0.4906 0.4874 | 0.4861 0.5513
(3,1) | 0.3968 | 0.3987 | 0.3999 0.3975 | 0.3967 0.4406
(3,2) | 04511 | 0.4535 | 0.4550 0.4520 | 0.4509 0.5073
(3,3) | 0.5378 | 0.5411 | 0.5431 0.5392 | 0.5375 0.6168

IV. CONCLUSION

In this paper, a variationally consistent trigonometric shear
deformation theory is applied to free vibration of isotropic
square and rectangular plates. The effects of transverse
shear and transverse normal deformation are both included
in the present theory. The theory gives realistic variation of
transverse shear stress through the thickness of plate and
satisfies the shear stress free boundary conditions on the top

44 | IJREAMV031042889

Www.ijream.org

ISSN : 2454-9150 Mol=03; Issue=04; July 2017
and bottom planes of the plate. The theory requires no shear
correction factor. The result of frequencies are compared
with exact frequencies and those of other higher order
theories. It is observed that the frequencies obtained by
present theory are in excellent agreement with the
frequencies of exact theory. The present theory is capable
to produce frequencies of thickness of bending mode of
vibration. The theory yields the exact dynamic shear
correction factor from the thickness shear motion which is a
most important factor in the dynamic analysis of plates.
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