

Analysis of Learner Strategies Obtained in IDEL Using Classification & Clustering Techniques

¹Mahendra A Sethi, ²Santosh S Lomte

¹Research Scholar, Department of CS&IT & Dr. B.A.M. University, Aurangabad (M.S.) India.

²VDF's School of Engineering & Technology, Latur (M.S.) India.

¹mahindrra@gmail.com

Abstract: In eLearning environment learning contents are precious source of information. The contents vary from simple written text embedded with images, visuals, graphs, tables, charts to audios/videos. Personalized eLearning systems deliver learning objects to according to certain need and objective of personalization. An interactive Dynamic eLearning Framework for Visual and Verbal Learners (IDEL) is a personalized learning object delivery and recommender system that address the learning strategies in terms of visual, verbal, listening and reading [1]. This paper aims to analyze and validate the nine learning strategy groups created in IDEL using classification and clustering techniques like Naïve Bayes, J48 and K-Means.

Keywords – Clustering Techniques, Classification, Naïve Bayes, K-Means.

I. INTRODUCTION

IDEL is a web based eLearning system that utilizes a multimodal approach to detect the learning strategies of visual and verbal learners. The approach uses visual/verbal dimension of Felder Silverman Learning Style model and aural/read-write dimension of VARK model. In IDEL a preference identification method detects the learning strategies of visual and verbal learners. Upon signup profile of a learner is created and learning strategy is stored in learner profile database [1].

Data mining allows to analyze and visualize raw data for Ene better understanding easily. The aim of educational data mining (EDM) is to find meaningful information that is useful for various stakeholders in education [2]. The data mining techniques available in literature are divided into three categories as classification, clustering and association rule mining. Data mining has several applications in intelligent tutoring systems. It is used to group students according to a certain data pattern, evaluate student performance and predict student performance, provide feedback to instructors, providing recommendation to students etc. Data mining algorithms such as K-Means, Fuzzy C-Means, Apriori, FP Growth are frequently used by researchers to mine the educational data. Review of various educational data mining techniques and their applications in eLearning are discussed [2], [3], [4]. R Koppisetty has provided an extensive review of applications of data mining in adaptive and intelligent tutoring system [5].

II. LITERATURE SURVEY

Classification is a supervised data mining technique used to predict categorical data. The method or classifier assigns a data item from feature space to a target class or a label. Generally, it predicts the class labels from a given set of known class categories to an unknown set of similar data items where predictor class label is missing.

Liyanage, M. P. P., KS, L. G., & Hirakawa, M. (2016) proposed an automated system to predict learning styles using data mining techniques such as J48, Naive Bayes, Bayesian Network and random forest by integrating Weka tool with Moodle LMS for log analysis. The learning styles of newly registered students are found using ILS Questionnaire. The authors evaluated learning logs of 80 students and found that J48 decision tree algorithm to be best suitable for classification [6].

Mesaric, J., & Sebalj, D. (2016) used decision tree classifiers to classify the students in two classes as per the success rate in academic exams conducted at the end of year. The authors implemented REPTree and J48 algorithms for classification and performed an analysis to find the factors that affects the academic success. REPTree has achieved highest rate in classification up to 79% as compare to J48 but could not able to generate the tree for both classes [7].

Y. Helmy., A. Abdo., R. Abdallah (2016) proposed a hybrid framework that uses ILS questionnaire for learning style

ISSN : 2454-9150 Vol-03, Issue-05, Aug 2017

detection and Decision Tree, Naive Bayes, Neural Networks and Support Vector Machine for classification [8].

Abdullah, M., Daffa, W. H., Bashmail, R. M., Alzahrani, M., & Sadik, M. (2015) conducted a study to evaluate learner style impact on performance of learners in eLearning environment for providing recommendations to learners and instructors. The data collected through Blackboard LMS is analyzed using classification techniques in Weka tool. The NB Tree classifier provided the highest accuracy value of 69.697% the author suggest that the model is applicable for Felder Silverman Learning Style Model and the 12% increase is observed in performance of students with the proposed approach [9].

A Naive Bayes classifier is implemented by Kozierkiewicz Hetmanska, A., & Bernacki, J. (2015) for classification of students in terms of the learning outcomes in an intelligent tutoring system [10]. Levashenko, V., Zaitseva, E., Kostolny, J., & Kvassay, M. (2015) used fuzzy classifiers and fuzzy decision trees for solving the classification problem in an educational web portal [11]. For predicting the outcome Ribeiro, B., & Cardoso, A. (2008) used neural network and support vector machine based classification system that works on learning logs taken from a Moodle based and adaptive eLearning environment [2]. Chellatamilan, T., Ravichandran, M., Suresh, R. M., & Kulanthaivel, G. (2011). proposed a system to predict learning styles in eLearning environment using the data mining techniques ID3, J48 Decision trees and K Means Clustering [13].

Clustering is an unsupervised learning technique. In clustering grouping of objects is done based on similarity characteristics. Similarity measures varies according to application and requirement. Like classification clustering techniques are also used to group the known data items and usually they are applied on to predict clusters upon a set of data items with various distance / dimension measures.

Yang, J et al., (2014) has proposed an approach to dynamically find the learner style using information patterns. The authors implemented a method that predicts the learning style by observing critical learning behavior. The system creates clusters of learner according to learning style. To verify the system predicts and creates the desired clusters 30 students were asked to complete the ILS questionnaire and results were compared. The author's claim that the learning style predication accuracy of approach is high as compare to previous studies [14].

Sajjadi, S., Shapiro, B., McKinlay, C., Sarkisyan, A., Shubin, C., & Osoba, E. (2017) used grade data to obtain the predictive clusters for early detection of success or failure. The authors used K-means data mining technique with fivefold cross validated dataset [15]. Murugananthan, V., & Shivakumar, B. L. (2014) has developed a framework

"eLearn" to group and classify the contents using K-Means method. The authors claim to achieve 89.998% system performance accuracy [16].

Mirabedini, S. (2013). has proposed a new clustering algorithm that automatically finds the number of clusters. This approach was developed to overcome the problem of specifying number of clusters prior to apply a clustering technique like K-Means algorithm which iteratively finds the specified number of clusters using the data set [17].

Varghese, B. M., Unnikrishnan, A., Sciencist, G., Kochi, N. P. O. L., & Kochi, C. U. S. A. T. (2010). has used two clustering algorithms K-Means and Fuzzy C-Means to reveal the hidden patterns from a digital educational database that contains over 8000 records. In this study, the internal assessment and university assessment results were correlated with attends and numbers of sessions attended [18].

Manish Joshi et al., analyzed learning content access / visits behavior of 176 students using Crisp Fuzzy C-Means and Rough K-Means clustering algorithm in Moodle LMS to detect learning styles. The authors discussed the concept of overlapping cluster and demonstrated how to identify learning styles using the non-crisp clustering techniques for creating three clusters named as studious, crammers, workers according to their study patterns [19]. Despotovic Zrakic et al., implemented a tool for creating clusters using K-Means algorithm based on the learning behaviors in one-week duration using LMS. All the three clusters represent the learning styles in FSLSM [20]. Kock, M., & Paramythis, A. (2010) introduced multi-level clustering technique to identify the problem-solving styles using the learning activity sequence behavioral data in an intelligent tutoring system [22]. Rodrigo, M. M. T., Anglo, E. A., Sugay, J. O., & Baker, R. (2008) proposed a method to characterize the learning behavior and affective states of learners using K-means clustering algorithm in Weka [23].

III. DATA ANALYSIS USING DATA MINING TECHNIQUES

In IDEL, the learning strategies are identified using the explicit approach of learning style detection. 62 Learners have participated into experiment conducted in IDEL. Table The data obtained through these tests is stored into database. The relation strategy stores the identified learning strategy of each learner. The data in strategy table is used for analysis. The analysis is carried out to suggest the classification and clustering methods that provides best results on the data set obtained using the proposed approach. Data mining tool Weka is used to perform the data mining and analysis. The figure below shows the snapshot of the input database relation used for data mining and analysis in Weka tool. As shown in figure there are 62 instances that stores the learning strategy of

individual learner based on learning style preference and listening-reading preference. The relation strategy has four attributes LID, FLSP, FLRP, FLST.

Figure 1: Input data in Weka Tool

3.1 Classification

Three different versions of Supervised Naïve Bayes Classification and J48 algorithm in Weka tool is used for analysis and evaluation on data in strategy table. Evaluation of full training data set, 10-fold cross validation and 66% split for training and remaining 34 % for testing is carried out. Table 1 shows the results and comparative analysis of both the classifiers. J48 decision tree classifier has achieved higher accuracy in 10-Fold-Cross Validation test mode on the dataset obtained by explicit approach.

Table 1: Classifier Accuracy Comparison

Classifie r	Test Mode	Total Instance s	Correctl y Classifie d	Incorrectl y classified	Accurac y
Naive Bayes	evaluate on training data	62	60	2	96.7742 %
Naive Bayes	10-fold cross- validatio n	62	59	3	95.1613 %
Naive Bayes	split 66.0% train, remainde r test	21	19	2	90.4762 %
J48 pruned tree	evaluate on training data	62	60	2	96.7742 %

	1991N -	: 2454-915	0 V01-03	, issue-05 , <i>I</i>	Aug 2017
J48 pruned tree	10-fold cross- validatio n	62	60	2	96.7742 %
J48 pruned tree	split 66.0% train, remainde r test	21	19	2	90.4762 %

3.1.1 Results of Naive Bayes Classifier

The results achieved using Naïve Bayes Classifier algorithm in Weka tool are shown below for all the three test modes.

3.1.1.1 Test Mode -10-Fold Cross-Validation

5.1.1.1 Test mode -10-1 out Cro	ss-vanaanon							
=== Run information ===								
Scheme: weka.classifiers.bayes.NaiveBayes -D								
Relation: STRATEGY								
Instances: 62								
Attributes: 4								
LID								
FLSP								
FLRP								
FLST								
Test mode: 10-fold cross-valid	lation							
=== Stratified cross-validation =								
=== Summary ===								
Summary								
Correctly Classified Instances	59	95.1613 %						
Incorrectly Classified Instances	3	4.8387 %						
Kappa statistic 0	.9161							
Mean absolute error	0.0406							
Root mean squared error	0.1091							
Relative absolute error	28.3372 %							
Root relative squared error	41.7496 %							
Total Number of Instances	62							
abcdefghi < classi	fied as							
$7 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ $								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
0 0 0 0 0 0 0 0 0 0								

3.1.1.3 Test Mode - Split Train and Test Mode:

=== Run information === Scheme: weka.classifiers.bayes.NaiveBayes -D Relation: STRATEGY Instances: 62

	ISSN : 2454-9150 Vol-03, Issue-05, Aug 2017
Attributes: 4	FLRP = BLR: VRBLR (3.0)
LID	FLRP = AR: VRAR (4.0)
FLSP	FLSP = VVB: BBLR (39.0/2.0)
FLRP	Number of Leaves : 7
FLST	Size of the tree : 10
Test mode: split 66.0% train, remainder test	=== Stratified cross-validation ===
=== Evaluation on test split ===	=== Summary ===
== Summary ===	Correctly Classified Instances 60 96.7742 %
Correctly Classified Instances 19 90.4762 %	Incorrectly Classified Instances 2 3.2258 %
Incorrectly Classified Instances 2 9.5238 %	Kappa statistic0.9448
Kappa statistic 0.764	Mean absolute error 0.0139
Mean absolute error 0.0441	Root mean squared error 0.0851
Root mean squared error 0.1143	Relative absolute error 9.691 %
Relative absolute error 30.9947 %	Root relative squared error 32.5658 %
Root relative squared error 46.257 %	Total Number of Instances62
Total Number of Instances 21	=== Confusion Matrix ===
=== Confusion Matrix ===	a b c d e f g h i $<$ classified as
	•
a b c d e f g h i $<$ classified as	7 0 0 0 0 0 0 0 0 $a = VSAL$ 0 9 0 0 0 0 0 0 0 $b = VSBLR$
2 0 0 0 0 0 0 0 0 a = VSAL 0 2 0 0 0 0 0 0 0 b = VSBLR	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 3 0 0 0 0 e = VRBLR 0 0 0 0 0 4 0 0 0 f = VRAR
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 4 0 0 0 1 = VRAR 0 0 0 0 0 0 0 1 0 g = BAL
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 1 0 g = BAL 0 0 0 0 0 0 0 0 37 0 h = BBLR
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
3.1.2 Results of J48 Classifier	3.1.2.2 Test Mode - Split Train and Test Mode
	=== Run information ===
The results achieved using J48 Classifier algorithm in Weka	Scheme: weka.classifiers.trees.J48 -C 0.25 -M 2
tool are shown below for all the three test modes.	Relation: STRATEGY
3.1.2.1 Test Mode -10-Fold Cross-Validation:	Instances: 62
=== Run information ===	Attributes: 4
Scheme: weka.classifiers.trees.J48 -C 0.25 -M 2	LID
Relation: STRATEGY	FLSP
Instances: 62	FLRP
Attributes: 4	FLST
LID	Test mode: split 66.0% train, remainder test
FLSP	J48 pruned tree
FLRP	
FLST	FLSP = VIS
Test mode: 10-fold cross-validation	FLRP = AL: VSAL (7.0)
149 prupad trac	FLRP = BLR: VSBLR (9.0)
J48 pruned tree	FLRP = AR: VSBLR (0.0)
FLSP = VIS	FLSP = VER
	FLRP = AL: VRAR (0.0)
 FLRP = AL: VSAL (7.0) FLRP = BLR: VSBLR (9.0) 	FLRP = BLR: VRBLR (3.0)
	FLRP = AR: VRAR (4.0)
FLRP = AR: VSBLR (0.0) FLSP = VER	FLSP = VVB: BBLR (39.0/2.0)
FLSP = VEK $ FLRP = AL: VRAR (0.0)$	Number of Leaves: 7
$ \mathbf{I} \mathbf{L} \mathbf{M} - \mathbf{A} \mathbf{L}, \mathbf{V} \mathbf{M} \mathbf{M} (0.0)$	Size of the tree: 10

International Journal for Research in Engineering Application & Management (IJREAM)

=== Evaluation on test split ===

Time taken to test model on test split: 0 seconds

=== Summary ===

Correctly Classified Instances	19	90.4762 %
Incorrectly Classified Instance	es 2	9.5238 %
Kappa statistic	0.7981	
Mean absolute error	0.0302	
Root mean squared error	0.1199	
Relative absolute error	21.1738 %	
Root relative squared error	48.5342 %	
Total Number of Instances	21	

=== Confusion Matrix ===

a	b	с	d	e	f	g	h i	į <	<	cl	assi	fied	as
2	0	0	0	0	0	0	0	0	a	=	VS.	AL	
0	2	0	0	0	0	0	0	0	b	=	VS	BLF	2
0	0	0	0	0	0	0	0	0	c	=	VS.	AR	
0	0	0	0	0	0	0	0	0	d	=	VR	AL	
0	0	0	0	0	2	0	0	0	e	=	VR	BLI	R
0	0	0	0	0	0	0	0	0	f	= `	VR.	AR	
0	0	0	0	0	0	0	0	0	g	=	BA	L	
0	0	0	0	0	0	0	15	0	h	1 =	BE	BLR	
0	0	0	0	0	0	0	0	0	i	=]	BAI	R	

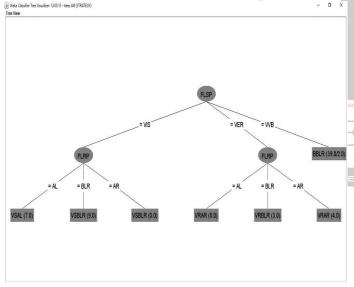


Figure 5.11 j-48 Pruned Tree

3.2 Clustering using Simple K-Means Algorithm

K-Means clustering technique is used to create the group of learners possessing similar learning strategies. For the data obtained through the proposed framework Simple K-Means algorithm is used to create the learning strategy clusters using the attribute FLST. Simple K-Means algorithm is executed in two ways for classes to clusters evaluation on training data test mode using Euclidian distance. Initially the scheme is run using random initialization point and later executed by choosing Farthest First point.

Table 2: Clustering Accuracy Comparison

ISSN : 2454-9150 Vol-03, Issue-05, Aug 2017

Initial Starting Point	No of Instances	No of Iterations	Sum of Squared Errors	Correctly Clustered Instances	Accuracy
Random	62	5	5.79	30	48.39
Farthest First	62	6	1.22	43	69.35

5.9.3.1 Simple K-Means with Random Initialization:

=== Run information ===

Scheme: weka.clusterers.SimpleKMeans -init 0 -maxcandidates 100 -periodic-pruning 10000 -min-density 2.0 -t1 -1.25 -t2 -1.0 -N 9 -A "weka.core.EuclideanDistance -R firstlast" -I 500 -num-slots 1 -S 10 Relation: STRATEGY Instances: 62 Attributes: 4 LID FLSP FLRP Ignored: FLST Test mode: Classes to clusters evaluation on training data

kMeans

Number of iterations: 5 Within cluster sum of squared errors: 5.797705323283124

Initial starting points (random):

Cluster 0: 10,VIS,BLR Cluster 1: 42,VVB,AR Cluster 2: 34,VVB,BLR Cluster 3: 19,VVB,BLR Cluster 4: 1,VVB,BLR Cluster 5: 44,VVB,BLR Cluster 6: 14,VVB,BLR Cluster 7: 39,VIS,AL Cluster 8: 40,VVB,BLR

=== Model and evaluation on training set ===

Clustered Instances

0	9(15%)
1	5(8%)
2	7(11%)
3	8 (13%)
4	4 (6%)
5	10(16%)
6	3 (5%)
7	8(13%)
8	8(13%)

ISSN 2.544.0150 10.55N 2.544.01500 10.55N 2.545N 2.55N 2.5N 2.	International Journal for Res	_				
Classes to Clusters: Cluster 6:42 VVB, AR 012345678 <- assigned to cluster	TREAM		ISSN : 2454-915	50 Vol-03, Issu	ie-05, Aug 2017	
Classes to Clasters. Cluster 3: 2, VIS, AL 0 12 3 4 5 6 7 8 <	Class attribute: FLST					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Classes to Clusters:					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.12245678 < assigned to aluster					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	Cluster 8: 62,	VVB,BLR			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				training set ===		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		· ,				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0 4 0 0 0 0 0 0 0 VRAR	. ,				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		· · · · ·				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		· · · · ·				
Cluster 0 <- VSBLR	0 1 0 0 0 0 0 0 0 BAR					
Cluster 2 <- No classCluster 3 <- No class	Cluster 0 < VSBLR	· ,				
Cluster 3 < No class	Cluster 1 < VRAR	8 21 (34%)			
Cluster 3 <- No classClasses to Clusters: $0 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid < -$ assigned to clusterCluster 5 <- BBLR		Class attribute	• FI ST			
Cluster 4 <- No class						
Cluster 5 < Boll R				gned to cluster		
Cluster 7 < VSAL						
Cluster 8 < VRBLR		000009	0 0 0 VSBL	R		
Incorrectly clustered instances: 32.0 51.6129 % $0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$		0 0 0 0 0 0 0 0 0 0 VSAR				
5.9.3.2 Simple K-Means with Farthest First Initialization=== Run information === $0 0 4 0 0 0 0 0 0 VRAR$ Scheme:weka.clusterers.SimpleKMeans -init 3 -max- candidates 100 -periodic-pruning 10000 -min-density 2.0 -t1 L.25 +12 -10 - N 9 - A "weka.core.EuclideanDistance -R first- last" -I 500 -num-slots 1 -S 10Relation:STRATEGY Instances:Relation:STRATEGY Instances:LID FLSP FLRPCluster 4 <- WSL Cluster 5 <- VSBLR Cluster 5 <- VSBLR						
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$	Incorrectly clustered instances: 32.0 51.6129 %					
$=== \operatorname{Run information} === \\ Scheme: weka.clusterers.SimpleKMeans -init 3 -max-candidates 100 -periodic-pruning 10000 -min-density 2.0 -t1 -1.25 + 2 -1.0 - N9 - A "weka.core.EuclideanDistance - R first-last" -1 500 -num-slots 1 -S 10 \\ Relation: STRATEGY \\ Instances: 62 \\ Attributes: 4 \\ LID \\ FLSP \\ FLRP \\ Ignored: \\ FLST \\ Test mode: Classes to clusters evaluation on training data kMeans \\ ===== \\ Number of iterations: 6 \\ Naive Bayes I48 \\ Neal 00 000 000 \\ VSAL 07 07 07 07 07 07 07 07 07 07 07 07 07 $	5.9.3.2 Simple K-Means with Farthest First Initialization					
Scheme:weka.clusterers.SimpleKMeans -init 3 -max- candidates 100 -periodic-pruning 10000 -min-density 2.0 -t1 1.25 -t2 -1.0 -N 9 -A "weka.core.EuclideanDistance -R first- last" -I 500 -num-slots 1 -S 10 $0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$	=== Run information ===					
Cluster 10candidates 100periodic-pruning 10000ini-density 2.0e1-1.25-1.0-N 9-A "weka.core.EuclideanDistance -R first-Cluster 1last" -I 500-num-slots 1-S 10Cluster 2Relation:STRATEGYCluster 3-C VRARInstances:62Cluster 4-S ALLIDCluster 4	Schemer and shotters Simple WM and init 2 mer			X		
$\begin{array}{c} \text{Cluster 1 (\sim-} \text{VSAL} \\ 1.25 - 12 - 1.0 - N 9 - A" weka.core.EuclideanDistance - R first-last" - 1500 - num-slots 1 - S 10 \\ \text{Relation: STRATEGY} \\ \text{Instances: 62} \\ \text{Attributes: 4} \\ \text{LID} \\ \text{FLSP} \\ \text{Ignored:} \\ \text{FLST} \\ \text{Test mode: Classes to clusters evaluation on training data} \\ \text{kMeans} \\ \hline \\ $						
last" -I 500 -num-slots 1 -S 10Cluster 2 < VRARRelation:STRATEGYInstances:62Attributes:4LIDCluster 5 < VSBLR		Cluster 1 < VSAL				
Relation:STRATEGY Instances:Gluster 3 <- VRBLR Cluster 4 <- BAL Cluster 4 <- BAL Cluster 5 < VSBLRAttributes:4 LID FLSP FLRPCluster 5 < VSBLR Cluster 6 < BAR Cluster 7 < No class Cluster 8 < BBLR						
Instances:62Cluster 4 <BALAttributes:4Cluster 5 < VSBLR						
Humburs. 4 Arch in Ender Cluster 6 < BARLID FLSP FLRPCluster 7 < No class		Cluster 4 < 1	BAL			
FLSP FLRPCluster 7 < No class Cluster 8 < BBLRIgnored: FLSTIncorrectly clustered instances:19.0 $30.6452 \ \%$ Test mode:Classes to clusters evaluation on training data kMeansIncorrectly clustered instances:19.0 $30.6452 \ \%$ MaineIncorrectly clustered instances:19.0 $30.6452 \ \%$ KMeansIncorrectly clustered instances:19.0 $30.6452 \ \%$ MaineIncorrectly clustered instances:19.0 $30.6452 \ \%$ MaineIncorrectly clustered instances:19.0 $30.6452 \ \%$ KMeansIncorrectly clustered instances:19.0 $30.6452 \ \%$ MaineIncorrectly clustered instances:19.0 $30.6452 \ \%$ MaineIncorrectly clustered instances:19.0 $30.6452 \ \%$ KMeansIncorrectly clustered instances:19.0 $30.6452 \ \%$ MaineIncorrectly clustered instances:19.0 $30.6452 \ \%$ MaineIncorrectly clustered instances:19.0 $30.6452 \ \%$ MaineIncorrectly clustered instances:19.0 $30.6452 \ \%$ Number of iterations:6Incorrectly clustered instances:19.0 $30.6452 \ \%$ Number of iterations:6Incorrectly clustered instances:19.0 $30.6452 \ \%$ Initial starting points (farthest first):Incorrectly clustered instances:Incorrectly clustered instances:19.0Cluster 0:14,VVB,BLRIncorrectly clustered instances:19.0Incorrectly clustered instances:	Attributes: 4					
FLN FLRPCluster 8 < BBLRIgnored: FLSTIncorrectly clustered instances: 19.0 30.6452 %Test mode: Classes to clusters evaluation on training data kMeans =====Incorrectly clustered instances: 19.0 30.6452 %Number of iterations: 6 148 160 160 160 Within cluster sum of squared errors: 1.2214535796402228 170 07 07 Initial starting points (farthest first): 148 00 00 00 Cluster 0: 14 , VVB, BLR 09 08 09 Cluster 1: 52 , VIS, AL 03 03 03 Cluster 2: 33 , VER, AR 01 00 00 Cluster 3: 56 , VER, BLR 01 37 37	LID					
Ignored: FLSTIncorrectly clustered instances:19.030.6452 %Test mode:Classes to clusters evaluation on training data kMeansTable 3: Learner Count in each Learning StrategyImage: StrategyImage: StrategyImage: StrategyImage: StrategyNumber of iterations: 6VSAL0707Within cluster sum of squared errors: 1.2214535796402228VSAL0000Initial starting points (farthest first):VRAL0000Cluster 0: 14,VVB,BLRVRAL000000VRAR040404Cluster 1: 52,VIS,AL010000Cluster 3: 56,VER,BLRBAR013737						
FLSTTest mode: Classes to clusters evaluation on training data kMeanskMeansDEL PIM APPROACHClassificationStrategy $MPROACH$ Naïve BayesJ48VSAL070707VSAR000000Within cluster sum of squared errors: 1.2214535796402228VSAL0707Initial starting points (farthest first):VRAL000000Cluster 0: 14,VVB,BLR00000000Cluster 1: 52,VIS,AL03030303Cluster 2: 33,VER,AR01000000Cluster 3: 56,VER,BLRBAR013737		Cluster 8 < 1	BBLK			
Test mode: Classes to clusters evaluation on training data kMeansTable 3: Learner Count in each Learning StrategyLearning StrategyDEL PIM APPROACHClassificationNumber of iterations: 6VSAL070707Within cluster sum of squared errors: 1.2214535796402228VSAL000000Initial starting points (farthest first):VRAL000000Cluster 0: 14,VVB,BLRVRAL00000000Cluster 1: 52,VIS,ALCluster 2: 33,VER,AR010000Cluster 3: 56,VER,BLRBAR013737	•	Incorrectly clu	ustered instances	: 19.0 3	0.6452 %	
Learning StrategyDEL PIM APPROACHClassificationkMeans =====Number of iterations: 6VSAL0707Number of iterations: 6VSAR000000Within cluster sum of squared errors: 1.2214535796402228VSAR090809Initial starting points (farthest first):VRAL000000Cluster 0: 14, VVB, BLRVRAL00000000Cluster 1: 52, VIS, ALCluster 1: 52, VIS, ALVRAL030303Cluster 2: 33, VER, ARBAL01000000BAR01373737		Table 3:	Learner Count	in each Learnii	ng Strategy	
Kive ans =====StrategyAPPROACHNaïve BayesJ48Number of iterations: 6VSAL070707Within cluster sum of squared errors: 1.2214535796402228VSAR000000Within cluster sum of squared errors: 1.2214535796402228VSBLR090809Initial starting points (farthest first):VRAL000000Cluster 0: 14, VVB, BLRVRAR040404Cluster 1: 52, VIS, ALVRBLR030303Cluster 2: 33, VER, ARBAL010000Cluster 3: 56, VER, BLRBAR013737	rest mode. Classes to clusters evaluation on training data				0	
Image: Second	kMeans	0	APPROACH	Naïve Bayes	J48	
Number of iterations: 6Viril0101Within cluster sum of squared errors: 1.2214535796402228VSAR000000VsBLR090809Initial starting points (farthest first):VRAL000000Cluster 0: 14,VVB,BLRVRAR040404Cluster 1: 52,VIS,ALVRBLR030303Cluster 2: 33,VER,ARBAL010000Cluster 3: 56,VER,BLRBAR013737		VSAI	07	07	07	
Within cluster sum of squared errors: 1.2214535796402228VSBLR090809Initial starting points (farthest first):VRAL000000Cluster 0: 14,VVB,BLRVRAR040404Cluster 1: 52,VIS,ALVRBLR030303Cluster 2: 33,VER,ARBAL010000Cluster 3: 56,VER,BLRBAR013737	Number of iterations: 6					
Initial starting points (farthest first):VRAL0000Cluster 0: 14,VVB,BLRVRAR040404Cluster 1: 52,VIS,ALVRBLR030303Cluster 2: 33,VER,ARBAL010000Cluster 3: 56,VER,BLRBAR013737	Within cluster sum of squared errors: 1.2214535796402228			08	09	
Cluster 0: 14,VVB,BLR VRAR 04 04 04 Cluster 1: 52,VIS,AL VRBLR 03 03 03 Cluster 2: 33,VER,AR BAL 01 00 00 Cluster 3: 56,VER,BLR BAR 01 37 37				00	00	
Cluster 1: 52,VIS,AL VRBLR 03 03 03 Cluster 2: 33,VER,AR BAL 01 00 00 Cluster 3: 56,VER,BLR BAR 01 37 37				04	04	
Cluster 1: 52, VIS,AL BAL 01 00 00 Cluster 2: 33, VER, BLR BAR 01 37 37		-	03	03	03	
Dill Oi 37 37 Cluster 3: 56, VER, BLR BAR 01 37 37				00	00	
				37		
Cluster 4: 30, VVB, AL BBLR 37 00 00			-			
BBLK 5/ 00 00		DDLK	57			

ISSN : 2454-9150 Vol-03, Issue-05, Aug 2017

IV. CONCLUISION

In IDEL out of nine learning strategies seven learning strategies were adopted by learners. The results of classification show that the profile data is quite accurately classified by using Naïve Bayes and J48 Decision Tree Classification techniques. The K-Means algorithm in Weka has not provided promising results on the profile data. K-Means algorithm with Farthest Initialization method has more accuracy as compare to random initialization method.

REFERENCES

[1] Mahendra A Sethi, Santosh S Lomte (July 2017) "An Interactive Dynamic eLearning Framework for Visual and Verbal Learners", SSRG International Journal of Computer Science and Engineering (SSRG - IJCSE), V4 (7), 3-13 July 2017. ISSN:2348 – 8387.

[2] Linan, L. C., & Perez, A. A. J. (2015). *Educational Data Mining and Learning Analytics: differences, similarities, and time evolution*. International Journal of Educational Technology in Higher Education, 12(3), 98.

[3] Jayanthi, M. A., Kumar, R. L., Surendran, A., & Prathap, K. (2016, October). *Research contemplate on educational data mining*. In IEEE International Conference on Advances in Computer Applications (ICACA), (pp. 110-114). IEEE.

[4] Castro, F., Vellido, A., Nebot, A., & Mugica, F. (2007). *Applying data mining techniques to e-learning problems*. Evolution of teaching and learning paradigms in intelligent environment, 183-221.

[5] Koppisetty, R. (2015). *Application of Data Mining in Adaptive and Intelligent Tutoring Systems: A Review*. International Journal of Computer Science and Information Technologies, Vol. 6 (3), 2910-2917.

[6] Liyanage, M. P. P., KS, L. G., & Hirakawa, M. (2016). *Detecting Learning Styles in Learning Management Systems Using Data Mining*. Journal of Information Processing, 24(4), 740-749.

[7] Mesaric, J., & Sebalj, D. (2016). Decision trees for predicting the academic success of students. Croatian Operational Research Review, 7(2), 367-388.

[8] Y. Helmy., A. Abdo., R. Abdallah (2016). A Proposed Framework for Learning Style Prediction in Higher Education Environments International Journal of Advanced Research in Computer Science and Software Engineering Volume 6, Issue 3, pp 140-143.

[9] Abdullah, M., Daffa, W. H., Bashmail, R. M., Alzahrani, M., & Sadik, M. (2015). *The Impact of Learning Styles on Learner's Performance in E-Learning Environment*. International Journal of Advanced Computer Science and Applications, 6(9), 24-31.

[10] Kozierkiewicz Hetmanska, A., & Bernacki, J. (2015, June). A conception for use of user profile to prediction learning effects in *Intelligent Tutoring Systems*. In IEEE 2nd International Conference on Cybernetics (CYBCONF), 2015 (pp. 97-101). IEEE.

[11] Levashenko, V., Zaitseva, E., Kostolny, J., & Kvassay, M. (2015, November). *Educational portal with data mining support based on modern technologies*. In 13th International Conference

on Emerging eLearning Technologies and Applications (ICETA), 2015 (pp. 1-6). IEEE.

[12] Ribeiro, B., & Cardoso, A. (2008, October). *Evaluation system for e-learning with pattern mining tools*. In IEEE International Conference on Systems, Man and Cybernetics, 2008. SMC 2008. (pp. 3051-3056). IEEE.

[13] Chellatamilan, T., Ravichandran, M., Suresh, R. M., & Kulanthaivel, G. (2011). *Effect of mining educational data to improve adaptation of learning in e-learning system*.

[14] Yang, J., Huang, Z. X., Gao, Y. X., & Liu, H. T. (2014). *Dynamic learning style prediction method based on a pattern recognition technique*. IEEE Transactions on Learning Technologies, 7(2), 165-177.

[15] Sajjadi, S., Shapiro, B., McKinlay, C., Sarkisyan, A., Shubin, C., & Osoba, E. (2017). *Finding Bottlenecks: Predicting Student Attrition with Unsupervised Classifier*. IEEE, IntelliSys 2017 arXiv preprint arXiv:1705.02687.

[16] Murugananthan, V., & Shivakumar, B. L. (2014, March). *A novel application framework for educational data mining towards automated learning system*. In International Conference on Intelligent Computing Applications (ICICA), 2014 (pp. 148-152). IEEE.

[17] Mirabedini, S. (2013). *A new approach for clustering of students based on learning style*. International Research Journal of Applied and Basic Sciences, 4(5), 1277-1286.

[18] Varghese, B. M., Unnikrishnan, A., Sciencist, G., Kochi, N. P. O. L., & Kochi, C. U. S. A. T. (2010). *Clustering student data to characterize performance patterns*. Int. J. Adv. Comput. Sci. Appl, 138-140.

[19] Joshi, M., Vaidya, R., & Lingras, P. (2011). Automatic determination of learning styles. In Proc. 2nd International Conference on Education and Management Technology, IACSIT Press, Singapore (Vol. 13).

[20] Despotovic-Zrakic, M., Markovic, A., Bogdanovic, Z., Barac, D., & Krco, S. (2012). *Providing adaptivity in Moodle LMS courses*. Journal of Educational Technology & Society, 15(1), 326.

[21] Kock, M., & Paramythis, A. (2010, November). *Towards adaptive learning support on the basis of behavioural patterns in learning activity sequences*. In 2nd International Conference on Intelligent Networking and Collaborative Systems (INCOS), 2010 (pp. 100-107). IEEE.

[22] Rodrigo, M. M. T., Anglo, E. A., Sugay, J. O., & Baker, R. (2008). Use of unsupervised clustering to characterize learner behaviors and affective states while using an intelligent tutoring system. In International Conference on Computers in Education (pp. 57-64).

[23] Sabitha, A. S., & Mehrotra, D. (2013, January). *A push strategy for delivering of Learning Objects using meta data based association analysis (FP-Tree)*. In International Conference on Computer Communication and Informatics (ICCCI), 2013 (pp. 1-4). IEEE.