

An IOT Based Farming By Using Arduino Technology

¹Prof. A. R. Potdar, ²Ingale Vidya, ³Samrudhi Mankar, ⁴Shivani Shelar, ⁵Pooja Sonawane ¹Assistant Professor, ^{2,3,4,5}BE Computer, ^{1,2,3,4,5}Computer Department, SIEM, Mahiravani, Nashik, Maharashtra, India.

Abstract - Agriculture plays vital role in the development of agricultural country. In India about 70% of population depends upon farming and one third of the nations capital comes from farming. Issues concerning agriculture have been always hindering the development of the country. The only solution to this problem is smart agriculture by modernizing the current traditional methods of agriculture. Proper cultivation is very important to increase the crop. This is to propose a state of art wireless sensor technology in agriculture, which can show the path to the rural farming community to replace some of the traditional techniques. In our system the sensor motes have several external sensors namely leaf wetness, soil moisture, soil pH, atmospheric pressure sensors attached to it. Also the value of soil pH sensor is detected and intimates the farmer about the soil pH. Obtaining the soil pH value the farmer selects the necessary fertilizer and crop for farming. Our system will maintain two different cloud database one for agriculture department and other for farmer department. Using this system the agriculture factors monitored and controlled correctly because of this system there will be improvement in the productivity.

NA

Keywords — pH Sensor, Arduino, Soil, Smart Farming, Cultiva-tion, Wifi, Moisture.

I. INTRODUCTION

Agriculture is the backbone of India, and plays an important role in economic development. It is the science or practice of farming, including cultivation of the soil for the growing of crops. Cultivation is most often used to talk about the ways that farmers take care of crops and their farms. However, it consists of various phases that are depends on the environmental factors such as Temperature, Soil moisture and water level. Farmers need to keep the records of these environmental factors manually to cultivate crops properly. To avoid such burden from farmer, and to achieve such functionality farmers require a System which will be able to gather the information, from farm such as Temperature level, water level and soil moisture via various sensors. Furthermore, system should process this information to provide functionality to the farmers. To enable system accessible from anywhere it needs to be centralized and connected to Internet. Here, the concept of Cloud Computing comes .Thus, to manage all these functions Cultivation Management System comes into picture. This system allows farmers to view farm (or farm field) information such as sensors values, devices connected, etc. with the help of micro-controller arduino. All this information

can be accessed via Android enable mobile phone, tabs, etc. by farmers.

II. LITERATURE SURVEY

Sr. No	Method	Work Done	Cons
1	A Control System	System had focus on	Sensed data
	in an Intelligent	the control part	would not be
	Farming by using	which are watering	always accurate
	Arduino	and roofing	due to noises.
	Technology[1].	systems of an outdoor	
		farm based on the	
		statistical data	
		sensed from the	
		sensor systems	
		(including	
		temperature,	
		humidity, moisture	
		and light intensity	
		sensors).	
2	Arduino Interface	To plan and grow an	System will
	with Smart	agricultural system	suggest crop
	Farming	based on arduino	based on only
	System[2].	method	sensor values

JIREAM			
Sr.	Method	Work Done	Cons
No			
3	A Software	This approach is	The model was
	Model for	characterized by a	designed taking
	Precision	farmer soil crop	into
	Agriculture for	database acquired from	consideration the
	Small and	the field, crop calendars	specifics of
	Marginal	provided by agricultural	agriculture of the
	Farmer[3].	experts, real-time	Kerala region of
		acquisition of	India, the same
		parameters such as	principles can be
		temperature and rainfall	applied to small
		through sensors, and an	and marginal
		analytical model.	farmers
			everywhere in
			the country.
4	A flexible and	This system is flexible	This system is
	extensible	and extensible. It has	suitable for only
	framework for	provision for selection	particular types
	agricultural	of crop, dependent and	crop.
	Crop Yield	independent variables,	
	Prediction[4].	datasets for crop yield	
		prediction towards	
		precision agriculture.	
5	XCYPF: A	This paper they are	This system can
	Flexible and	studied the need for	give only the
	Extensible	crop yield prediction	prediction of
	Framework for	and the data mining	yield of crops.
	Agricultural	method is used in this	osearch in
	Crop Yield	paper.	
6	Prediction [5].	In this many me have	Energy this manage
6	Comparison of	In this paper we have	From this paper
	Organizing	Organizing Mana and	we conclude that
	Mans and	Multi-Dimensional	we can use uata
	Sammons	Scaling	of Sammons
	Manning on	Scanng.	Manning
	agricultural		mapping
	data sets for		
	nrecision		
	agriculture [6]		
	agriculture [0].		

III. PROPOSED SYSTEM

This system is a system which is used to make improve-ments

International Journal for Research in Engineering Application & Management (IJREAM) ISSN : 2454-9150 Vol-03, Issue-07, Oct 2017

> in the agricultural field. It is done on the basis of the cloudbased network. In this system, all the work will be operated with the help of an android app through which the farmers have to register themselves and they can get all the details about how much crop to be cultivated in that land and what kind of plants can they plant in the field. Other than that they will also get the information about the pH level of the soil and that how much moisture their soil contains so accordingly they can also get knowledge that what crop would be beneficial for them. We have also added sensors which will work as a sensing machine to sense the pH level as well as the moisture level. This system will be totally automated so no manual interference is required in this system the farmers will get the notification about their land and the crop as well.

A. Soil Moisture Sensor

sensor is interfaced with micro-controller This and programmed. Once it is programmed it is placed inside a box and kept in field f The soil moisture sensor has two probes which is inserted into the soil. The probes are used to pass current through the soil. The moisture soil has less resistance and hence passes more current through the soil whereas the dry soil has high resistance and pass less current through the soil. Soil moisture sensor includes comparator (LM393) which converts analog data to discrete. Two soil probes consist of two thin copper wires each of 5 cm length which can be immersed into the soil under test. The circuit gives a voltage output corresponding to the conductivity of soil. The soil between the probes acts as a variable resistance whose value depends upon moisture content in soil. The resistance across soil probes can vary from infinity (for completely dry soil) to a very little resistance (for 100moisture in soil) his variation in resistance across the probes (RS) leads to variation in forwardbias voltage which leads to corresponding variation in input base current (Ib).

B. Modules

1) Farmer Registration

Farmer has to register first and provide a personal information and its create a user id and next sign up first using a user name

and password and their are different option are available of view all crop list, feedback.

2) Hardware Embedding

The system having sensors connected to Arduino depending on the external factor they contribute to the plant growth. The sensors include soil moisture and water level sensors.

3) Naive Bayes

It is a machine learning algorithm for classification problems.

4) GPS location Extractor

Easily track Farmer and Farm location.

5) Cloud Embedding

To enable system accessible from anywhere it need to be centralized and connected to Internet. Here the concept of cloud computing is used.

6) Mobile Application

The Mobile application has three main parts i) a user can see historical sensed data from the plot, ii) a user can monitor plants status data and manually operate watering and roofing systems, and iii) a user can check the current and forecasts weather for the next three days.

7) Admin Module

Admin have facility of add crop, edit, delete, search particular crop and view available crop.

IV. GOALS & OBJECTIVES

A. Goals

- To provide farmer with real time PH value of his farm. To gen notification of watering the plant whenever needed.
- > To reduce the manual monitoring with the GPS module.
- To generate crop rotation and identification of appropriate fertilizer.
- To provide list of farmers growing which type of crop in that area.
- ➤ To minimize loss of farmers.

B. Objectives

The objective of this project is to provide android based embedded system for detect soil moisture and temperature.

V. DOM PARSER ALGORITHM

Algorithm MultipleTreeMerge(T,P)

// T is a set of DOM trees of the same type; // P is the tag for the roots of T. Initial M:i=0: for each tree t in T; *I*=0: for each child c in t; M[j++][i]=c;Endfor I + +;Endfor recognizePeerNode(M); childList *matrixAlignment(M);* = childList = repeatMining(childList,1); mergeOptional(childList); for each node c in childList if(c is a tree) then C = multipleTreeMerg(peerNode(c, M), log(c));

- Else // c is a leaf node
- C=c; Endif

Insert C as a child of P;

VI. MATHEMATICAL MODEL

```
S = (I,O,F) Where,
```

1) S: System.

I = f FI, FI1, M, PV, WL g are set of Inputs Where,

- 1) FI : Farrmer Information.
- 2) FI1 : Farm Information
- 3) M : Moisture
- 4) PV : pH Value
- 5) WL : Water Level

F = f F1, F2, F3, F4, F5, F6 g are set of Function Where,

- 1) F1 : Register
- 2) F2 : Login
- 3) F3 : Moisture calculation
- 4) F4 : pH calculation

5) F5 : Water Level calculation

6) F6 : crop suggestion

O = f CI, CS, SD, FD g are set of Output Where,

1) FD : Farmer Details.

2) CI : Crop Information.

3) CS : Crop Suggestion.

4) SD : Sensor Details.

Success Condition : To do proper feature extraction, Sensor embedding, Location details, proper database.

Failure Condition : No database, No internet connection.

Fig 1. Venn Diagram

VII. CONCLUSION

We conclude that Cloud based Cultivation Management System is system for the user who cultivates plants in farm field. Farmer can monitor farm details from anywhere. Farmer can also monitor the temperature, soil moisture details, water level, etc. If such environmental factors are monitored and there can be increase in the productivity.

VIII. FUTURE WORK

1) In future adding of feature that remotely manage and control their smart connected other irrigation equipment in proposed system.

2) In future we can make system for full country database.

3) In future we will be provided solar energy.

REFERENCES

[1] Narayut Putjaikal, Sasimanee Phusael, Anupong Chen-Iml,Dr.Phond Phunchongharnl, and Dr.Khajonpong Akkarajitsakup, *A Control Sys-tem in an Intelligent Farming by using Arduino Technology*, Fifth ICT nternational Student Project Conference (ICT-ISPC), 2016

[2] Ms. G. Rekha M.E1, S. Muthu Selvi, Arduino Interface with Smart Farming System, International Journal Of Engineering And Computer Science ISSN:2319-7242,2017, Page No. 20521-20526

[3] Satish Babu , *A Software Model for Precision Agriculture for Small and Marginal Farmers*, at the International Centre for Free and Open Source Software (ICFOSS) Trivandrum, India, 2013.

[4] Anshal Savla; Nivedita Israni; Parul Dhawan; Alisha Mandholia; Him-tanaya Bhadada; Sanya Bhardwaj,*Survey of classification algorithms for formulating yield prediction accuracy in precision agriculture*, In-ternational Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), 2015, Pages 1 - 7

[5] Aakunuri Manjula; G. Narsimha, *XCYPF: A flexible and extensi- ble framework for agricultural Crop Yield Prediction*, IEEE 9th Inter-national Conference on Intelligent Systems and Control (ISCO), 2015, Pages: 1 - 5

[6] Yash Sanghvi; Harsh Gupta; Harmish Doshi; Divya Koli; Amogh Ansh; Umang Gupta, *Comparison of Self organizing maps and Sam- mons mapping on agricultural datasets for precision agriculture*, In- ternational Conference on Innovations in Information, Embedded and Communica-tion Systems (ICIIECS), 2015, Pages: 1 - 5.