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Abstract: Swarm algorithms, although initially introduced for simulating human social behaviors, have nowadays 

become very popular as efficient search and optimization techniques. This paper provides an overview on two 

distinctive approaches of particle swarm optimization algorithms, one of the swarm intelligent groups. It begins with a 

foundation of classical Particle Swarm Optimization algorithm, and gradually examines the various extensions of the 

classical algorithm. It starts with static parameter analysis and then followed by the methods of dynamic parameter 

analysis. It also presents the development of PSO dynanics and the different methods adopted for the analysis of 

algorithm in a nutshell. 
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I. INTRODUCTION 

PSO is a population based stochastic search algorithm, 

aimed at obtaining optimal solution to a complex non-

linear optimization problem. PSO has many fundamental 

properties of classical swarm algorithm, such as proximity, 

diversity and adaptability. In PSO, particles are pseudo 

entities having two components, position and velocity. The 

position of a particle is a trial solution to a given 

optimization problem. Particle fly in the search space and 

adapt their velocity and positions based on its own and 

companions‟ historical behavior. The position of a particle 

in a simple PSO algorithm is determined by three factors, 

inertia, and the personal and global best position vectors. 

The inertia component is responsible for the motion of the 

particle in the direction of the velocity of previous 

iteration. The personal and global best position vectors act 

like two dynamic attractors. In fact, the velocity of a 

particle is an algebraic sum of three vectors: the inertial 

component and the positional difference of the particle 

with respect to its personal and global best positions. The 

personal best position ( pbest ) is the historical best 

position of a particle in its lifetime until the current 

iteration. The global best position is the best among the 

personal best positions of all the particles. Both the 

personal and the global best positions are updated over the 

iterations and the particle velocity and position are updated 

using their dynamic personal and global best positions 

until a criteria for convergence is satisfied. The particle 

with the best fitness measure of the objective function is 

declared as the solution to the optimization problem. 

     Researchers are keen to hybridize PSO with other 

evolutionary technique. For instance, selection, crossover 

and mutation operations in GA have been introduced into 

the PSO by some researchers. By the selection operation, 

the particles with the best performance are copied into the 

next generation to keep the best performing particles. 

Crossover operation is used in PSO to exchange 

information between a pair of individual particles to have 

the ability to jump to the new search areas like other 

evolutionary algorithms. The mutation operation is 

borrowed from evolutionary algorithm with the idea that 

PSO will increase its ability to escape from local optima. 

       PSO has attracted a good number of researchers from 

diverse domains of science, engineering and humanities, 

particularly for its following characteristics: 

 Simplicity: PSO is simple, and can be easily 

implemented in any high level programming 

language. Main body of a PSO program comprises a 

few lines of code. This particular feature of PSO 

attracts researchers from different disciplines with 

minimum programming skill. 

 Good Performance: PSO outperforms binary 

coded GA, and has comparable performance with real 

coded GA. It is found to give to good accuracy in 

determining optima for uni-modal, multi-modal, and 

functions with very rough surface. PSO is better than 

the differential evolutionary (DE) algorithms on 

occasions. DE employs a greedy search as the 

parameter vectors in current iteration is either better or 

of similar quality in DE. In PSO, particles move away 

from its historical best iteration, and thus it is not a 

greedy algorithm.  

 Few Control Parameters: PSO has few control 

parameters; the inertial co-efficient, the local and the 

global acceleration constants. Extensive research has 

already been undertaken to study the performance of 

PSO on the selection of parameters. There is however 

scope of further research on this issue particularly, 

selection of control parameters to have better 
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exploration in the first phase, and faster convergence 

in the exploitation phase.  

 Low Space Complexity: Because of its low space 

complexity, PSO is preferred to its competitive 

counterparts, such as CMA-ES [1]. The low space 

complexity is a useful feature for PSO for complex 

optimization of high dimensional search problems. 

       The paper is organized to analize the static and 

dynamic parameter analysis of PSO algorithm. 

II. ANALYSIS OF PSO ALGORITHM 

        Since pioneered by Eberhart and Kennedy in 1995 

[2], PSO is analyzed by so many researchers. The first 

PSO dynamics had only two parameters, the local and the 

global best positions )(tp l
i and )(tpg respectively. The 

then dynamics had no inertia factor   as given in (1), 

where each particle is treated as a point in a 1-dimensional 

space.  
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The inertia component in the velocity adaptation is used 

for local exploration, while the cognitive component and 

the social components together are used for global 

exploration in the search landscape.  

        In the year 1998, Shi and Eberhart [3] introduced a 

new parameter called inertia weight into the original PSO 

dynamics as in (3). 
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The inertia factor is capable to control the local/global 

exploration. If   is set to zero, all particles would 

virtually converge at the same point in the search space. 

The larger the in ]1 ,0[ , the higher is the spread of search 

from the initial search position on the search landscape. 

Static parameter analysis: The first deterministic study of 

the particle trajectory was undertaken by Clerc and 

Kennedy in 2002 [4]. They considered the velocity update 

equation as in (4). 
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where, the inertia factor is assumed to be 1, and 

)(tl and )(tg are random positive numbers. By 

considering 
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the dynamics for a population of 1-Dimensional 

deterministic particle, can be reduced to (6)-(7). 
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where, p and )(t are constants. The velocity and position 

being defined in one dimension needs are scalars, and so 

the vector symbols are dropped from (6)-(7). 

The basic system dynamics can be expressed in a state 

equation as (8) 
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The eigen-values of M are 
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Now the behavior of the trajectory for different cases of 

)(t  is as follows: 

Case 1: For 4)(0  t , i.e.; roots are complex 

conjugate, then the trajectory of the particles are cyclic. 

Case 2: For 4)( t  i.e., the roots are real numbers with 

no cyclic behavior. 

Case 3: For 4)( t i.e.; the roots are same value with -1. 

Then the system will oscillate infinitely. 

In 2002,Trelea [5] analyzed the PSO algorithm on the 

basis of convergence, and parameter selection guidelines 

are derived from the dynamic system theory. He 

considered the one dimensional algorithm as in (9) 
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Then (9) can be restructured like (6), as given in (11) 
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and (10) reduces to   
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Now, by linear, discrete-time dynamic system theory,  (11) 

and (12) can be represented by a state equation as,                                                                                                                     
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The eigen-values 1 and 2 of the system matrix A are the 

solutions of 

    
.0)1)((2   t
 

Now, the necessary and sufficient condition for the system 

to be stable is that, both the eigen-values have magnitude 

less than 1. This gives, 
 

       0 , 0)( t and .02)(2  t  

Case 1: For complex roots 
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which, gives harmonic oscillation before the convergence. 

Case 2: For roots with negative real parts 

      ,0 ,01)(  t
 

which, gives zigzagging behavior before the convergence. 

Dynamic parameter analysis: The first stability analysis 

of stochastic particle dynamics using Lyapunovs‟ analysis 

was undertaken by Kadirkamanathan in 2006 [7]. He 

considered the parameters are random in stead of non-

random as presumed by the previous researchers. The 

values of this random numbers are increased when the 

inertia factor is reduced. The one dimensional particle 

dynamics is represented as (13) [7]: 
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At equilibrium point ptptp lg  )()( is time invariant. 

Hence, at equilibrium, dropping the subscript,(13) reduces 

to 
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where, )()()( ttt gl   , which satisfy 

Kt  )(0  and 21 ccK  , 21,cc are constants called 

acceleration coefficients. Hence 
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Then the dynamics can be represented in state matrix form 

as (18) 
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with ).)(( pytu tt    

Then by using Lyapunovs‟ stability analysis 

1. For 1 and 0 ,   
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3. For 0 , it reduces to )1/())1(2( 2  K  

4. For 0 , it reduces to )1(2 K . 

Violation of these conditions does not imply instability, but 

stability cannot be guaranteed. 

In the year 2009, Poli [8], analyzes stochastically the PSO 

dynamics order-1 and order-2 stability by considering 

convergence analysis. 

       During stagnation each dimension of the PSO 

dynamics becomes independent and the dynamics in one 

dimension is given by (20) [8], 
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where, )(tl  and )(tg are constants whose elements are 

random numbers uniformly distributed in ],0[ ic . New 

random constants are drawn for each particle i and 

iteration t .During stagnation there is no fitness 

improvement, so the superscript i can be dropped.Now, 
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By using the expectation operator E, the stability of the 

dynamic particle can be studies as follows: 
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Since )(ti is uniformly distributed in ],0[ ic , we have 

2
)]([ 1c

tE l  , and 
2

)]([ 2c
tE g   then, 

).(
2

)(
2

)]1([
2

1)]([)]1([

21

21

tp
c

tp
c

txE
cc

txEtxE

gl 








 
 

 

Considering p as a fixed point for this equation, we obtain 

+ .
)()(

21

21

cc

tpctpc
p

gl




  
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Then, the eigen-values of the above first order difference 

equation lie in the stable region. Similarly, for second 

order stable, the magnitude of the eigen-values of the 

system M must be less than 1. Where M is the system 

matrix of 
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Poli analyzed the following lines for convergence [8]: 

1. For a particle to converge, it requires 
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, if the PSO is not an 

optimizer, still effectively a conjecture. 

Recently, in 2010 Samal et al. [9], analyze the parameter 

selection by Jury‟s stability analysis and root locus 

technique. 

By considering t
g xtptx  )()( , the velocity update 

equation (1) reduces to 
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It can be represented in vector-matrix (state-space) form as 

in classical discrete control theory (Kuo, 1992) [10], given 

by       
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Considering a closed loop system of the PSO dynamics, 

the transfer function of the system, using the theory of 

state equations (Shi and Eberhart, 1998) [11], in the form 
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        Jury‟s test (Kuo, 1992) is a well-known method to test 

stability of a closed loop system from its characteristic 

equationGiven a characteristic equation of the form of a 

polynomial of z , 
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where naaa ..,..........,........., 10 are the real co-efficients, , the 

necessary and sufficient conditions for the polynomial )(zF  

to have no roots on and outside the unit circle in the z -plane 

to ensure stability, as indicated below. 

Necessary conditions:1. 0)1( F ,  2. 0)1()1(  Fn ,     

Sufficient condition: naa 0 , for 2n . 

       In root locus analysis, the trajectories of the roots of the 

characteristic equation are considered by varying the gain 

from zero to infinity. These trajectories, known as the locus 

of the roots (or root locus) can be used to determine the 

range of parameters of a closed loop system for guaranteed 

stability. 

By using the above two stability analysis the selected range 

of parameters are given below: 

(i) 1 , (ii) )1(2)(0   tg
, 

 (iii) )1(2)()(2   tt gl
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(iv) )1()()1(   tl
and         

(v) 2)1())()(()1(   tt gl .Substitution of 

condition (iv) in (v) yields:(vi)  2)(2  tg . 

Since 1995, the PSO is analyzed by deterministically and 

stochastically by so many researchers for faster convergence 

at the global minima. The details of the evolution and 

analysis are summarized in Table 1 and Table 2. In Table 1, 

the developments of PSO are given in a chronological order, 
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whereas in Table 2, different methods of analyses and 

selection of parameters are summarized. 

Table 1: Development of PSO 

Researchers 

name and year 

Developments of 

PSO 
Remarks 

Eberhart and 

Kennedy,1995 [2] 

PSO with no inertia 

factor 

Optimization of 

non-linear functions 

using PSO is 

introduced. 

Shi and Eberhart, 

1998 [3] 

Introduction of 

inertia factor 

Reaches the global 

minima with 

minimum iteration 

of time 

Angeline, 1998 

[12] 

Introduction of 

hybrid swarm. 

Optimize quickly 

but with a limiting 

search space. 

Clerc, 1999 [13] 
Introduction of 

Constriction factor 

He defined a Swarm 

and Queen method 

with “no-hope” and 

“re-hope” 

convergence 

criterion. So that, the 

swarm re-initializes 

its position time to 

time. 

Suganthan, 1999 

[14] 

Dynamic 

neighborhood 

Dynamically 

increasing local 

neighborhood 

operator and LBEST 

were discussed. 

Clerc, and van 

Den Bergh, 2002 

[15] 

Parameter selection 

by stability analysis 

By the stable 

analysis, the inertia 

factor should 

be 1 . 

Kennedy and 

Mendes, 2002 

[16] 

Topological 

structuring in the 

neighborhood 

A good solution is 

obtained but the 

process is slow. 

CoelloCoello, 

Lechuga, 2002 

[17] 

Extend the 

heuristic called, 

Multi-objective 

PSO 

The generation of 

non-dominated 

vectors and the 

mechanism to 

maintain diversity. 

Table 2: Methods of analysis and parameter selections on 

PSO 

Research

ers name 

Methods of 

analysis 

Remarks on parameters 

Shi and 

Eberhart 

(1999) 

[18] 

Simulations of 

global and local 

exploration depends 

upon   

Analyze the convergence as 

if 

,2max iv 1  

3max iv , 8.0 , 

]2.1,9.0[  

Clerc and 

Kennedy 

(2002) [4] 

The particles‟ 

trajectory in discrete 

time and then 

progress it in 

continuous time. 

Given the suitable range of 

parameter for stability, 

4)()()(  ttt gl  , 

where, with 1 (fixed). 

Trela 

(2002) [5] 

Eigen value analysis 

of PSO system state 

equation 

The parametric condition 

for stability 

1 ,    

,0)()(  tt gl 

02))()((2  tt gl 

. 

Designs strategy for balancing 

exploration and exploitation. 

Kadirkam

anathan 

(2006) [7] 

Stability analysis of 

Stochastic particle 

dynamics using 

Lyapunov analysis. 

Sufficient condition for 

asymptotic stability. 
























1

)21(2 2

K  

Violation of this condition, 

however, does not lead to 

instability. 

Poli 

(2009) [8] 

Stochastic order 1 

and order 2 stability 

analysis of PSO 

dynamics by 

considering 

convergence. 

)((lim tptx g
t 

 and 

0)]([lim  txStdDevt

 

Analysis confirms that 

eigen-values of the PSO 

dynamics do not depend on 

the location of )(tp l
 and 

)(tp g
in the search space. 

So, convergence of PSO at 

)(tp g
with 

optimizing

0)]([lim  txStdDevt

remains a conjecture. 

Samal et 

al. (2010) 

[9] 

Stability and 

Convergence 

analysis of PSO 

dynamics by control 

theoretic approach. 

The recommended guidelines 

in parameter selection for a 

gbest  PSO program is 

)(tl  in ]1),1[(   

)(tg in )]2(,2[   , 

where ))(1(2 tl  ,

randomly in [0.17, 0.25]. 

 

III. CONCLUSIONS   

This paper surveys the research and development of the 

PSO algorithm with different environments. During the 

last dacade, it found considerable interest from the natural 

computing research community and has been seen to offer 

rapid and effective optimization of complex 

multidimensional search spaces, with adaptations to multi-

objectives and constrained optimization. 

IV. FUTURE DIRECTIONS   

 On the other hand, the search process of a PSO algorithm 

should be a process consisted of both contraction and 

expansion, so that, it could have the ability to escape from 

local minima, and eventually find good enough solutions. 

A mathematical foundation of PSO is in need to have a 

deep understanding of the dynamic process of PSO. There 

is also a need of a unique representation of the PSO 

topology, so that researchers can duplicate each other's 

work and compare their work with the others. Challenges 
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remain, in areas such as dynamic environments, avoiding 

stagnation, handling constraints and multiple objectives. 

Like evolutionary algorithms, PSO has become an 

important tool for optimization and other complex problem 

solving. The next decade will no doubt see further 

refinement of the approach and integration with other 

techniques, as well as large applications moving out of the 

research laboratory and into industry and commerce. 

Further understanding of the relative strengths of PSO and 

other techniques, and the challenges in deploying a PSO 

based system are required. However, to the optimization 

toolbox PSO is certainly welcome as a better addition.  
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