
International Journal for Research in Engineering Application & Management (IJREAM) 

ISSN : 2454-9150    Vol-04, Issue-02, May 2018 

662 | IJREAMV04I0238207          DOI : 10.18231/2454-9150.2018.0284            © 2018, IJREAM All Rights Reserved. 

 

Cross Site Scripting (XSS) Attack Prevention And 

Detection 

Yogesh R. Nagargoje, Csmss Chh. Shahu College Of Engineering, Aurangabad, India. 

ABSTRACT: Cross-Site Scripting (or XSS) is a security attack that occurs when an attacker uses another's browser to 

run a malicious script. It is called "cross-site" because it involves the interactions of two or more sites. The "scripting" 

in the name comes from the injecting of malicious scripts. There are several types of Cross-Site Scripting attacks that 

can occur: reflected, stored, and DOM-based. With the growing technology, and creation of JavaScript in 1995, hackers 

began to discover the vulnerabilities of JavaScript. There are solutions to these attacks on the levels of client-side and 

server-side which can complete each other‟s to provide protection for the website and web applications to prevent 

malicious scripts from being implemented. 

Keywords – CSS, Detection, Scripts, Cross Site, XSS. 

I. INTRODUCTION 

Cross site scripting attacks this is likewise known as XSS, it 

is a more widespread and high risk web application security 

issue which is used against internet or client web browser. 

These types of attacks give privilege to attacker to inject 

client side script into web pages which is seen by the other 

user. Occur whenever an application contains data that 

started from a user and transmits it to a Web browser 

without first properly validating or encoding that content. 

With the aid of this type of attack attacker execute scripts in 

the target browser, which in result user session can hijack, 

deface websites, port scan internal networks, and conduct 

phishing attacks and access control over the user’s browser 

using scripting malware. 

Objective of Project 

Cross-site scripting (XSS) is probably the most prevalent 

high risk web application vulnerability nowadays, and yet it 

is still one of the most overlooked by developers and 

defenders alike. So our objective is to make aware people 

about: 

 What is XSS? 

 How does a Cross-site scripting attack occur? 

 How we can prevent it? 

Problem definition 

The malicious content sent to the web browser often takes 

the form of a segment of JavaScript, but may also include 

HTML, Flash, or any other type of code that the browser 

may execute. The variety of attacks based on XSS is almost 

limitless, but they commonly include transmitting private 

data, like cookies or other session information, to the 

attacker, redirecting the victim to web content controlled by 

the attacker, or performing other malicious operations on 

the user's machine under the guise of the vulnerable site. 

Web application expands its usage to provide more and 

more services and it became more useful of the essential 

communication channels between service providers n users. 

Users mostly use the scripting language is JavaScript and 

increasing the use of JavaScript also directly increases the 

serious problem of security vulnerabilities in web 

application too. Class of Scripting is injected into dynamic 

pages of trusted sites foe transferring sensitive data of third 

party. And it avoids same origin policy or cookie protection 

mechanisms to allow attackers to access confidential data. 

II. LITERATURE SURVEY 

Mr. Ismail et.al.[1] present an client side proxy for solving 

both persistent and non persistent attack  that he can 

compare request and response character and if it detects any 

reflection of malicious characters, then these are disabled. 

This client side can protect only against a reflected cross 

site scripting attacks and therefore does not complement 

our gateway well. It does not prevent cross site request 

forgery attack and rewrite the server’s response. 

SessionSafe[2] present a server side solution to session 

theft via (reflected and stored) cross site scripting attacks, 

i.e. the solution does not prevent cross site scripting attacks 

per se, but rather prevent successful attacks from stealing 

the session. Other attacks via cross site scripting, e.g. 

request to create malicious transaction are still possible, e.g. 

by modifying the input. Also cross site request forgery 

attacks are still possible.  

Jovanovic et.al.[3] describe a server side solution for 

preventing cross site request forgery attacks. It does not 

prevent cross site scripting attacks, but it does not rely on 

the refer string and inserted rewrite request and response by 

adding a token to the URL……. 

Server-side Cross-Site Scripting [19] Detection System is 

based on passive HTTP traffic monitoring and relies upon 

the strong correlation between incoming parameter and 

reflected XSS parameter issues. The set of all legitimate 

JavaScript’s in a given web application is bounded. This 

forms the basis for two novel detection approaches to 



International Journal for Research in Engineering Application & Management (IJREAM) 

ISSN : 2454-9150    Vol-04, Issue-02, May 2018 

663 | IJREAMV04I0238207          DOI : 10.18231/2454-9150.2018.0284            © 2018, IJREAM All Rights Reserved. 

 

identify successfully carried out reflected XSS attacks and 

to discover stored XSS code on the server side. 

Scott and Sharp [5] describe a web proxy that is located 

between the users and the web application, and that makes 

sure that a web application adheres to prewritten security 

policies. The main categories of such policy based 

approaches are that the creation and management of 

security policies is a tedious and error prone task. Similar to 

[5], there exists a commercial product called AppShield, 

which is a web application firewall proxy that apparently 

does not need security policies.  

III.   SYSTEM DESIGN 

Reflected XSS attack 

Summary: The Attacker compromises an application 

vulnerable to reflected XSS. 

Actor: Attacker 

Precondition: The Attacker must have access to the 

application. 

Description: 

 The attacker creates a link containing malicious 

script targeting the vulnerable application and 

makes 

 it available to the attacker e.g. by sending an email 

to the victim containing the link 

 The victim clicks on the malicious link. 

 The application executes the script in the victims’ 

application. 

 The attacker then compromises the victim. 

 
Figure 1: Reflected XSS attack 

Stored XSS attack  

Summary: The Attacker compromises an application 

vulnerable to stored XSS. 

Actor: Attacker 

Precondition: The Attacker must be able to submit 

input into the application. 

Description: 

 The attacker submits a text-based script to the 

application. 

 The application stores the script. 

 The victim visits an infected page of the 

application. 

 The application executes the script in the victim’s 

browser. 

 The attacker then compromises the victim’s 

application. 

Post condition: 

The victim, who is an application user, is compromised: 

XSS can be used to steal sensitive information such as 

usernames and passwords, perform session hijacking, 

remotely control or monitor the user's browser, poison 

cookies, impersonate a web page used to gather 

information, including credit card numbers or used as a 

pivoting point for other attacks. 

 
Figure 2: Stored XSS attack 



International Journal for Research in Engineering Application & Management (IJREAM) 

ISSN : 2454-9150    Vol-04, Issue-02, May 2018 

664 | IJREAMV04I0238207          DOI : 10.18231/2454-9150.2018.0284            © 2018, IJREAM All Rights Reserved. 

 

IV. IMLEMENTATION  

XSS REFLECTED  

This type of vulnerability compromises the security of the 

user and not the server. Consists in to inject HTML or 

Javascript code into a web, in order for a user's browser to 

execute the code injected at the moment of seeing the 

altered page when you access it. The form known as 

reflected is commonly produced in sites that receive 

information via GET (although the case via POST), such 

as: searcher.php? d = string_to_search If you suffer this 

type of vulnerability you could inject code in the browser as 

follows:  

search.php? d = <script type = "text / javascript"> script (); 

</ script> 

In this way the inserted code would not be displayed 

persistently, but still a user malicious could create a URL 

that executes the malicious code to later send it to a person 

and that when executing it, it can subtract cookies or even 

its password (Pishing). 

Exploiting Vulnerability 

 
Figure 3 Example of using the web form. 

`To exemplify this type of vulnerability, presents a page 

requesting a name through a form. Once sent, the script 

shows the text string "Hello sent_name ". 

Our code for XSS Reflected only validates that the entered 

name is not an empty string. 

Set Security to low: 

Now have a look over a small script which would generate 

an alert window. So in the given text field for “name” I 

will inject the script in the server. 

<script>alert(“hello”)</script>  

Figure 4: Example of Reflected XSS 

Browser will execute our script which generates an alert 

prompt as showing following screenshot. 

In low security it will easily bypass the injected script when 

an attacker injects it in the text field given for “name” 

which should be not left empty according developer. 

Figure 5: Reflected XSS attack 

Set to security High: 

In high security the level of security increased where you 

can easily find preg-replace PHP function is used to 

perform regular expression to disable the java script. 

Preg_replace – Searches string for matches to pattern and 

replaces them with replacement. 

Now above technique will fail as you can see it will search 

for each and every valid input character for text field and 

replace invalid character into blank space. 



International Journal for Research in Engineering Application & Management (IJREAM) 

ISSN : 2454-9150    Vol-04, Issue-02, May 2018 

665 | IJREAMV04I0238207          DOI : 10.18231/2454-9150.2018.0284            © 2018, IJREAM All Rights Reserved. 

 

To bypass high security level use element of HTML, as you 

can see I have use image source tag to generate the string 

inside the web server. 

<img src=x onError=alert(„xss‟)> 

Prevention for XSS Reflected: 

To avoid this type of vulnerability it is recommended to 

always filter the information coming from the user before 

making use of it. Usually filtering the characters "<" and 

">" would be sufficient, although It is also recommended to 

filter the names of the labels that can be dangerous in this 

type of attack like <script>, <object>, <applet>, <embed> 

and <form>. You can also perform checks to verify that the 

type of data entered and the length of each field correspond 

to what was expected. For its part, at the high security level 

makes use of the htmlspecialchars () function to convert 

special characters to HTML entities. 

In order to better understand its functionality, some 

examples are shown: 

 & (Et) becomes & amp; 

 "(Double quotes) becomes & quot; when 

ENT_NOQUOTES is not established. 

 '(Single quote) becomes & # 039; (or & apos;) 

only when ENT_QUOTES issettled down. 

 <(Less than) becomes & lt; 

 (Greater than) becomes & gt; 

Another countermeasure focused on the users of web pages 

is to have the browser as much as updated possible. For 

example, the Internet Explorer browser from its version 8, 

introduces as novelty an Anti XSS filter that detects 

possible manipulations of the page by injecting code in a 

parameter of the URL. 

XSS STORED 

XSS stored, also called direct or persistent XSS, consists of 

embedding HTML code or Java script in a web application 

and can even modify the interface of a website 

(defacement) As in the case of XSS reflected, this 

vulnerability compromises the security of the user and not 

the server. 

Detection Rule: 

Classification rule: 

The algorithm for the detection of cross site scripting 

attack. We focus attention on the characters which are 

included in cross site scripting attacks. Now let us prepare 

to define the detection algorithm. We denote an input string 

by the length of by  (i=1,2,...,I), respectively.  

Let us call s1, s2 ,...,s33 attack feature characters. We define 

other character as s33, i.e. s33are character such as alphabet, 

number  & infrequently symbols in cross site scripting 

attack. Let us denote| |as an appearence frequency in . 

Then , we see that  

Example 1: Let l be  

  <imglowsrc=javascript:alert(2)> 

Then, we have |s2 |=1, |s4 |=1, |s5 |=1, |s6 |=1, |s8 |=1, |s10 |=1, 

|s11 |=1, & |s33|=25. 

We define 

    

for all input . Here aj is non negative real number & 

 

For some. .We assume that the input  is a 

cross site scripting attack (resp.  is normal)if xi>  

(resp.Xi≤ )  

         Variable  Candidates of symbols 

s1 

s2 

s3 

s4 

s5 

s6 

s7 

s8 

s9 

s10 

s11 

s12 

s13 

s14 

s15 

s16 

s17 

s18 

s19 

s20 

s21 

s22 

s23 

s24 

s25 

s26 

s27 

s28 

s29 

s30 

s31 

s32 

“(double quotation mark) 

>(greater than sign) 

/(slash) 

<(less than) 

space 

=(equal) 

'(single quotation mark) 

:(colon) 

.(period) 

((left parenthesis) 

)(right parenthesis) 

-(hyphen) 

;(semicolon) 

(yen sign) 

&(ampersand) 

{(left brace) 

}(right brace) 

#(hash mark) 

+(plus) 

!(excramation mark) 

,(konma) 

@(atmark) 

?(question mark) 

](right bracket) 

[(left bracket) 

_(underscore) 

(tilde) 

*(asterisk) 

|(vertical bar) 

^(caret) 

%(percent) 

$(dollars) 

Table 1: Special character use to calculate threshold 

Calculation of important degree of symbol 

The calculation method of important  degree of characters. 

we can assume that is composed of | | symbol li,0, li,1 ..., 

li,|l1|. The case that include Aj symbol Sj is considerable. 



International Journal for Research in Engineering Application & Management (IJREAM) 

ISSN : 2454-9150    Vol-04, Issue-02, May 2018 

666 | IJREAMV04I0238207          DOI : 10.18231/2454-9150.2018.0284            © 2018, IJREAM All Rights Reserved. 

 

So we define the symbol  (1)
,

 (2)
,

 (a),...,
 (Aj) at the 

appearance position by the order of appearing in . 

Example 2: 

 Let  be  

  iSCRIPT 

SRC=http://ha.ckers.org/xss.jsi/SCRIPT. 

Then, we show the label symbol of in the following table. 

The  input  include two symbols S18 (<),so we have 

s18
(1)= ,(k=1)  and  s18

(2)=  (k=40) 

Table: Example of the labeled character in  

 

 

theabove equation is based on the related word extraction 

algorithm. We define the important degree of symbol 

 

 
   4. PERFORMANCE 

ANALYSIS 

  

Behavior of system on different security levels:- 

Security Level LOW:- 

 
Fig 6 Set Security Level  

V. CONCLUSION 

Cross-site scripting is one of the most dangerous and most 

common website vulnerability on the internet. An XSS 

attack comes in many forms that range from something as 

small as pop up in a window, to something as destructive as 

a virus or aworm, and even worse; XSS is capable of 

compromising a person’s identity. Nobody in this world is 

ever completely safe from it. As XSS vulnerabilities 

continue to grow, the best way to protect yourself against it 

is to always be on the alert, and be aware of what you 

should do when you come across it. In this project we given 

a demo of different XSS attacks so that everyone get 

severity of XSS attack. In detection we consider the 

appearance of position and frequency of characters in input 

string which detect almost XSS attack through input.  

REFERENCES 

[1] O.Ismail,M.Etoh, Y.Kadobayashi, and  S. Yamaguchi. A 

proposal and Implementation of Automatic 

Detection/Collection System for cross site scripting 

Vulnerability. Proceeding of the International Conference on 

advance Information Networking and application.2012 

[2] M.JohnsSessionSafe: Implementing XSS Session Handling 

Proceeding of Europeon Symposium on Research in 

computer security,2006. 

[3] N. Jovanovic,E.Kirda, and C.Kruegel. Preventing Cross Site 

Request Forgery Attacks. Proceeding of IEEE International 

Conference on Security and Privacy Communication 

Networks,2006. 

 [4] Martin Johns, Bjorn Engelmann, and Joachim Posegga, 

”XSSDS: Server-side Detection of Cross-Site Scripting 

Attacks,” proc. IEEE Computer Security Applications 

Conference, pp. 335–343, October 2008. 

 [5] D. Scott and R. Sharp,” Abstracting Application-Level Web 

Security,” In Proceedings of the 11th International World 

Wide Web Conference (WWW 2002), May 2002.  


