

(1,2)*- β g''' -interior and (1,2)*- β g''' -closure in Bitopological Spaces

Dr. A. Arivu Chelvam, Assistant Professor, Department of Mathematics, Mannar Thirumalai Naicker college, Madurai & Tamilnadu, arivuchelvam2008@gmail.com

Abstract: The purpose of this paper for the notion of $(1,2)^*$ - $\beta g'''$ -interior is defined and some of its basic properties are studied. Also we introduce the concept of $(1,2)^*$ - $\beta g'''$ - closure in bitopological spaces using the notion of $(1,2)^*$ - β g''' -closed sets, and we obtain some related results. For any $A \subseteq X$, it is proved that the complement of $(1,2)^*$ - β g''' -interior of A is the $(1,2)^*$ - $\beta g'''$ -closure of the complement of A.

Keywords: (1,2)*- β g^{'''}-interior and closure, (1,2)*- β g^{'''}-closed set, (1,2)*- β g^{'''}-open set, (1,2)*- g^{''}-open.

I. INTRODUCTION

The first step of locally closedness was done by Bourbaki [1]. He defined a set A to be locally closed if it is the intersection of an open set and a closed set. In literature many general topologists introduced the studies of locally closed sets. Extensive research on locally closedness and generalizing locally closedness were done in recent years. Stone [2] used the term FG for a locally closed set. Ganster and Reilly used locally closed sets in [3] to define LC-continuity and LC-irresoluteness. Balachandran et al introduced the concept of generalized locally closed sets. Veera Kumar (Sheik John [4]) introduced \hat{g} -locally closed sets (= ω -locally closed sets) respectively.

II. PRELIMINARIES

Definition: 2.1 A subset A of a space (X, τ_1, τ_2) is called:

- (i) a $(1,2)^*$ - \hat{g} -closed set [5] (= $(1,2)^*$ - ω -closed set) if $\tau_{1,2}$ -cl(A) \subseteq U whenever A \subseteq U and U is $(1,2)^*$ -semi-open in (X, τ_1 , τ_2). The complement of $(1,2)^*$ - \hat{g} -closed set is called $(1,2)^*$ - \hat{g} -open set;
- (ii) a (1,2)*-ğ -closed set [6] if τ_{1,2}-cl(A) ⊆ U whenever A ⊆ U and U is (1,2)*-sg-open in (X, τ₁, τ₂). The complement of (1,2)*- ğ-closed set is called (1,2)*- ğ-open.

Remark: 2.2

- (i) Every $\tau_{1,2}$ -open set is $(1,2)^*$ g''' -open but not conversely.
- (ii) Every $\tau_{1,2}$ -closed set is $(1,2)^*$ g''' -closed but not conversely.
- (iii) Every (1,2)*- g''' -closed set is (1,2)*- **g**-closed but not conversely.
- (iv) Every $(1,2)^*$ $\ddot{\mathbf{g}}$ -closed set is $(1,2)^*$ ω -closed but not conversely.
- (v) Every $(1,2)^*$ g^m -closed set is $(1,2)^*$ ω -closed but not conversely.

Proposition: 2.3

III. (1,2)*- β g^{*m*} -INTERIOR

Definition: 3.1

For any $A \subseteq X$, $(1,2)^*$ - β g^{*m*} -int(A) is defined as the union of all $(1,2)^*$ - β g^{*m*} -open sets contained in A. i.e., $(1,2)^*$ - β g^{*m*} -int(A) = $\bigcup \{G : G \subseteq A \text{ and } G \text{ is } (1,2)^*$ - β g^{*m*} -open } [7].

Lemma: 3.2

For any $A \subseteq X$, $\tau_{1,2}$ -int(A) $\subseteq (1,2)^*$ - β g''' -int(A) $\subseteq A$.

Proof:

It follows from Remark 2.2 (i).

The following two Propositions are easy consequences from definitions.

Proposition: 3.3

For any subsets A and B of (X, τ_1, τ_2) ,

- (i) $(1,2)^*-\beta g''' int(A \cap B) = (1,2)^*-\beta g''' int(A)$ $\cap (1,2)^*-\beta g''' - int(B).$
- (ii) $(1,2)^*-\beta g''' int(A \cup B) \supseteq (1,2)^*-\beta g''' int(A) \cup (1,2)^*-\beta g''' int(B).$
- (iii) If $A \subseteq B$, then $(1,2)^*$ $\beta g'''$ -int $(A) \subseteq (1,2)^*$ - $\beta g'''$ -int(B).

(1,2) - (1,2) - $\beta g''$ - int(X) = X and (1,2) - $\beta g''$ - int(ϕ) = ϕ .

IV. (1,2)*- β g^{'''} -CLOSURE

In this section, we define $(1,2)^*$ - β g^m-closure of a set and study its properties

Definition : 4.1

For every set $A \subseteq X$, we define the $(1,2)^*$ - $\beta g'''$ -closure of A to be the intersection of all $(1,2)^*$ - $\beta g'''$ -closed sets containing A.

In symbols, $(1,2)^*-\beta$ g''' -cl(A) = $\cap \{F : A \subseteq F \in (1,2)^*-G'' C(X)\}.$

Lemma: 4.2 For any $A \subseteq X$, $A \subseteq (1,2)^*$ - $\beta g'''$ -cl(A) $\subseteq \tau_{1,2}$ -cl(A).

Proof: It follows from Remark 2.2 (ii).

Remark: 4.3

Both containment relations in Lemma 4.2 may be proper as seen from the following example.

Example : 4.4

Let $X = \{a, b, c\}$ with $\tau 1 = \{\phi, \{a, b\}, X\}$ and $\tau_2 = \{\phi, X\}$. Let $A = \{a\}$. Then $(1,2)^*-\beta g''' -cl(A) = \{a, c\}$ and so $A \subset (1,2)^*-\beta g''' -cl(A) \subset \tau_{1,2}$ -cl(A).

Lemma: 4.5

For any $A \subseteq X$, $(1,2)^*$ - ω -cl(A) $\subseteq (1,2)^*$ - β g^{*m*} -cl(A), where $(1,2)^*$ - ω - cl(A) is given by $(1,2)^*$ - ω -cl(A) = \cap {F : $A \subseteq F \in (1,2)^*$ - ω C(X)}.

Proof:

It follows from Remark 2.2 (v).

Containment relation in the above Lemma 4.5 may be proper as seen from the following example.

Example: 4.6

Let $X = \{a, b, c, d\}$ with $\tau 1 = \{\phi, \{a\}, \{b, c\}, \{a, b, c\}, X\}$ and $\tau_2 = \{\phi, X, \{a\}\}$. Then $(1,2)^*$ - G'' C(X) = $\{\phi, \{d\}, \{a, d\}, \{b, c, d\}, X\}$ and $(1,2)^*$ - ω C(X) = $\{\phi, \{d\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}$.

Let A= {b, d}. Then $(1,2)^*-\beta g''' -cl(A) = \{b, c, d\}$ and $(1,2)^*-\omega -cl(A) = \{b, d\}$. So, $(1,2)^*-\omega -cl(A) \subset (1,2)^*-\beta g''' -cl(A)$ [8].

Lemma: 4.7

For an $x \in X$, $x \in (1,2)^*$ - $\beta g'''$ -cl(A) if and only if $V \cap A \neq \phi$ for every $(1,2)^*$ - $\beta g'''$ -open set V containing x.

Proof:

Let $x \in (1,2)^*$ - $\beta g'''$ -cl(A) for any $x \in X$. To prove $V \cap A \neq \varphi$ for every $(1,2)^*$ - $\beta g'''$ -open set V containing x. Prove the result by contradiction. Suppose there exists a $(1,2)^*$ - β g'''-open set V containing x such that $V \cap A = \varphi$. Then $A \subset V^c$ and V^c is $(1,2)^*$ - $\beta g'''$ -closed. We have $(1,2)^*$ - $\beta g'''$ -cl(A) $\subset V^c$. This shows that $x \notin (1,2)^*$ - $\beta g'''$ -cl(A) which is a contradiction. Hence $V \cap A \neq \varphi$ for every $(1,2)^*$ - $\beta g'''$ open set V containing x.

Conversely, let $V \cap A \neq \phi$ for every (1,2)*- β g^{*m*} -open set V containing x. To prove $x \in (1,2)^*$ - β g^{*m*} -cl(A). We prove the result by contradiction. Suppose $x \notin (1,2)^*$ - β g^{*m*} -cl(A). Then there exists a (1,2)*- β g^{*m*} -closed set F containing A such that $x \notin F$. Then $x \in F^c$ and F^c is (1,2)*- β g^{*m*} -open. Also $F^c \cap A = \phi$, which is a contradiction to the hypothesis. Hence $x \in (1,2)^*$ - β g^{*m*} -cl(A) [9].

Proposition 4.8

For any two subsets A and B of (X, τ_1, τ_2) , the following hold:

- (i) If A ⊆ B, then (1,2)*- β g^m -cl(A) ⊆ (1,2)*- β g^m cl(B).
- (ii) $(1,2)^{*-}\beta g''' cl(A \cap B) \subseteq (1,2)^{*-}\beta g''' cl(A) \cap (1,2)^{*-}\beta g''' cl(B).$

Theorem: 4.9

Let A be any subset of X. Then

- (i) $((1,2)^* \beta g''' int(A))^c = (1,2)^* \beta g''' cl(A^c).$
- (ii) $(1,2)^* \beta g''' int(A) = ((1,2)^* \beta g''' cl(A^c))^c$.
- (iii) (1,2)*- β g^m -cl(A) = ((1,2)*- β g^m -int(A^c))^c.

Proof:

(i)Let $x \in ((1,2)^{*-} \beta g''' - int(A))^{c}$. Then $x \notin (1,2)^{*-} \beta g''' - int(A)$. That is, every $(1,2)^{*-} \beta g'''$ -open set U containing x is such that $U \not\subset A$. That is, every $(1,2)^{*-} \beta g'''$ -open set U containing x is such that $U \cap A^{c} \neq \varphi$. By Lemma 4.8 x $\in (1,2)^{*-} \beta g''' - cl(A^{c})$ and therefore $((1,2)^{*-} \beta g''' - int(A))^{c} \subseteq (1,2)^{*-} \beta g''' - cl(A^{c})$. Conversely, let $x \in (1,2)^{*-} \beta g''' - cl(A^{c})$. Then by Lemma 4.8 every $(1,2)^{*-} \beta g''' - open set$ U containing x is such that $U \cap A^{c} \neq \varphi$. That is, every $(1,2)^{*-} \beta g''' - open set$ U containing x is such that $U \cap A^{c} \neq \varphi$. That is, every $(1,2)^{*-} \beta g''' - open set$ U containing x is such that $U \not\subset A$. This implies by Definition 3.1 $x \notin (1,2)^{*-} \beta g''' - int(A)$. That is, $x \in ((1,2)^{*-} \beta g''' - int(A))^{c}$ and so $(1,2)^{*-} \beta g''' - cl(A^{c}) \subseteq ((1,2)^{*-} \beta g''' - int(A))^{c}$. Thus $((1,2)^{*-} \beta g''' - int(A))^{c} = (1,2)^{*-} \beta g''' - cl(A^{c})$.

- (ii) Follows by taking complements in (i).
- (iii) Follows by replacing A by A^c in (i) [10].

REFERENCE

- [1] Bourbaki, N.: General topology, Part I, Addison-Wesley, Reading, Mass., 1966.
- [2] Stone, M.: Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41 (1937), 374-481.
- [3] Ganster, M. and Reilly, I. L.: Locally closed sets and LCcontinuous functions, Internat J. Math. Sci., 12(3) (1989), 417-424.
- [4] Sheik John, M.: A study on generalizations of closed sets and continuous maps in topological and bitopological spaces, Ph.D Thesis, Bharathiar University, Coimbatore, September 2002
- [5] Ravi, O., Thivagar, M. L. and Jinjinli.: Remarks on extensions of (1,2)*-g-closed maps, Archimedes J. Math., 1(2) (2011), 177-187.
- [6] Ravi, O., Kamaraj, M., Pandi, A. and Kumaresan, K.: (1,2)*-
- **G** -closed and (1,2)*- **B** -open maps in bitopological spaces, International Journal of Mathematical Archive, 3(2) (2012), 586-594.
- [7] Ravi, O., Pandi, A. and Latha, R.: Contra-pre-(1,2)*-semicontinuous functions, Bessel Journal of Mathematics (To appear).
- [8] Ravi, O., Pious Missier, S. and Salai Parkunan, T.: On bitopological (1,2)*-generalized homeomorphisms, Int J. Contemp. Math. Sciences.,5(11) (2010), 543-557.
- [9] Ravi, O., Thivagar, M. L. and Nagarajan, A.: $(1,2)^*$ α g-closed sets and $(1,2)^*$ -g α -closed sets (submitted).
- [10] Ravi, O., Thivagar, M. L. and Ekici, E.: Decomposition of (1,2)*- continuity and complete (1,2)*-continuity in bitopological spaces, Analele Universitatii Din Oradea. Fasc. Matematica Tom XV (2008),29-37.