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Abstract: The purpose of this paper for the notion of (1,2)*- B g"” -interior is defined and some of its basic properties

are studied. Also we introduce the concept of (1,2)*- g g™ - closure in bitopological spaces using the notion of (1,2)*-

g" -closed sets, and we obtain some related results. For any A < X, it is proved that the complement of (1,2)*- f

g"” -interior of A is the (1,2)*-p g" -closure of the complement of A.
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I. INTRODUCTION

The first step of locally closedness was done by
Bourbaki [1]. He defined a set A to be locally closed if it
is the intersection of an open set and a closed set. In
literature many general topologists introduced the studies of
locally closed sets. Extensive research on locally closedness
and generalizing locally closedness were done in recent
years. Stone [2] used the term FG for a locally closed set.
Ganster and Reilly used locally closed sets in [3] to define
LC-continuity and LC-irresoluteness. Balachandran et al
introduced the concept of generalized locally closed sets.
Veera Kumar (Sheik John [4]) introduced g-locally closed
sets (= o -locally closed sets) respectively.

Il. PRELIMINARIES

Definition: 2.1 A subset A of a space (X, 11, 1) is called:

(i) a (1,2)*-g-closed set [5] ( = (1,2)*-w-closed set ) if
112-CI(A) € U whenever A c U and U is (1,2)*-
semi-open in (X, T, T). The complement of
(1,2)*-g-closed set is called (1,2)*-g-open set;

(if) a(1,2)*-g -closed set [6] if T1,-CI(A) € U whenever A
c U and U is (1,2)*-sg-open in (X, 11, T2). The
complement of (1,2)*- g-closed set is called (1,2)*-
E-open.

Remark: 2.2

(i) Every t10-0open set is (1,2)*- g” -open but not
conversely.

(if) Every ty,-closed set is (1,2)*- g” -closed but not
conversely.

(iii) Every (1,2)*- g" -closed set is (1,2)*- Z-closed
but not conversely.

(iv) Every (1,2)*- & -closed set is (1,2)*- o -closed
but not conversely.

(v) Every (1,2)*- g” -closed set is (1,2)*- o -closed
but not conversely.

Proposition: 2.3
If AandBare (1,2)*- g” -closed sets in (X, 11, 12), then
A U B need not be (1,2)*- g” -closed in (X, 11, 15).
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1. (1,2)*- B g”-INTERIOR
Definition: 3.1

Forany A c X, (1,2)*- B g"” -int(A) is defined as the union
of all (1,2)*- p g” -open sets contained in A. i.e., (1,2)*- B
g” -int(A) = U{G:G < Aand Gis (1,2)*- B g"” -open}
[7]1

Lemma: 3.2
Forany A € X, 1, -int(A) € (1,2)*- B g” -int(A) S A.

Proof:

It follows from Remark 2.2 (i).

The following two Propositions are easy consequences
from definitions.

Proposition: 3.3

For any subsets A and B of (X, 11, 12),

(i) (1,2)*- B g"-int(A N B) = (1,2)*- B g" -int(A)
N (1,2)*- B g” -int(B).

(i) (1,2)* B g” -int(A U B) 2 (1,2)*- B g" -
int(A) U (1,2)*- B g” -int(B).

(iii) If A € B, then (1,2)*- B g" -int(A) < (1,2)*-
B g” -int(B).

(iv) (1,2)*- B g” -int(X) = X and (1,2)*- B g" -
int(e) = ¢.

IV. (1,2)*- B " -CLOSURE

In this section, we define (1,2)*- p g” -closure of a set
and study its properties

Definition : 4.1

For every set A < X, we define the (1,2)*- B g"” -closure of
A to be the intersection of all (1,2)*- B g” -closed sets
containing A.

In symbols, (1,2)*- B g”" cl(A)=N {F: AcF € (1,2)*- G"
C(X)}.

Lemma: 4.2
Forany A c X, A c (1,2)*- B g" -cl(A) S 11-CI(A).

Proof: It follows from Remark 2.2 (ii).
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Remark: 4.3
Both containment relations in Lemma 4.2 may be proper as
seen from the following example.

Example : 4.4

Let X = {a, b, c}with 1 = {o, {a, b}, X} and 1, = {9, X}.
Let A = {a}. Then (1,2)*- B g” -cl(A) = {a,c} and so A c
(1,2)*- B g" -cl(A) c 1y -Cl(A).

Lemma: 4.5

For any A € X, (1,2)*- o -cl(A) € (1,2)*- B g” -cl(A),
where (1,2)*- o - cl(A) is given by (1,2)*-w-cl(A)=N {F:
AcCFe((12)* o CX).

Proof:

It follows from Remark 2.2 (v).

Containment relation in the above Lemma 4.5 may be
proper as seen from the following example.

Example: 4.6

Let X = {a, b, c, d}with 11 = {o, {a}, {b, c}, {a, b, c}, X}
and 1, = {¢, X, {a}}. Then (1,2)*- G” C(X) = {0, {d}, {a,
d}, {b, c, d}, X} and (1,2)*- o C(X) = {0, {d}, {a, d}, {b,
d}, {c, d}, {a, b, d}, {a, c, d}, {b, c,d}, X}.

Let A= {b, d}. Then (1,2)*- B g” -cl(A) = {b, c, d} and
(1,2)*- o -cl(A) = {b, d}. So, (1,2)*-0-Cl(A) c (1,2)*- B g"
-cl(A) [8].

Lemma: 4.7
For anx € X, x € (1,2)*- B g” -cl(A) if and only if V. N A
# o for every (1,2)*- B g” -open set V containing X.

Proof:

Let x € (1,2)*- B g” -cl(A) for any x € X. To prove V.N A
# ¢ for every (1,2)*- B g” -open set V containing X. Prove
the result by contradiction. Suppose there exists a (1,2)*- B
g"” -open set V containing x such that V N A = ¢. Then A
c VS and Vis (1,2)*- B g” -closed. We have (1,2)*- B g”
-cl(A) c V°. This shows that x & (1,2)*- B g” -cl(A) which
is a contradiction. Hence V N A # ¢ for every (1,2)*- p g" -
open set V containing X.

Conversely, let VN A # ¢ for every (1,2)*- B g” -open set
V containing X. To prove x € (1,2)*- B g” -cl(A). We prove
the result by contradiction. Suppose x & (1,2)*- B g” -cl(A).
Then there exists a (1,2)*- B g” -closed set F containing A
such that x ¢ F. Then x € F®and F°is (1,2)*- B g" -open.
Also F° N A = ¢, which is a contradiction to the
hypothesis. Hence x € (1,2)*- B g” -cl(A) [9].

Proposition 4.8

For any two subsets A and B of (X, 14, 1,), the following

hold:
(i) If A cB,then (1,2)*- B g” -cl(A) < (1,2)*- B "

cl(B).

(i) (1,2)*- B g”" -cl(A NB) < (1,2)* B g" -cl(A) N
(1,2)*- B g" -cl(B).

Theorem: 4.9
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Let A be any subset of X. Then
() ((1,2)* B g"-int(A)° = (1,2)*- B g" -CI(A°).
(ii) (1,2)*-pg"-int(A) = ((1,2)*- B g" -cI(A))".
(iii) (1,2)*-p " -cl(A) = ((1,2)*- B g" -int(A°))".

Proof:

(Let x € ((1,2)*- B g" -int(A))". Then x ¢ (1,2)*- B g" -
int(A). That is, every (1,2)*- B g” -open set U containing x
is such that U ¢ A. That is, every (1,2)*- B g” -open set U
containing x is such that U N A # ¢. By Lemma 4.8 x
€(1,2)*- B g” -cl(Ac) and therefore ((1,2)*- B g” -int(A))°
C (1,2)* B g" -cl(A°). Conversely, let x € (1,2)*- B g" -
cl(A. Then by Lemma 4.8 every (1,2)*- B g" -open set
U containing x is such that U N A® # ¢. That is, every
(1,2)*- B g” -open set U containing X is such that U & A.
This implies by Definition 3.1 x ¢ (1,2)*- B g"” -int(A).
That is, X € ((1,2)*- B " -int(A))° and so (1,2)*-pg"-
cl(A® < ((1,2)*- B g” -int(A))*. Thus ((1,2)*- B g” -
int(A))° = (1,2)*- B g” -cl(A°).

(i)  Follows by taking complements in (i).
(iii)  Follows by replacing A by A®in (i) [10].
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