
International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Special Issue - iCreate April - 2018

84 | IJREAM_SP180118 Special Issue on iCreate April -2018 © 2018, IJREAM All Rights Reserved.

Detecting and Defending against Location based

Permission Leakage in Applications
1
Prof. Vishal Shinde,

2
Mr.Nitin Varkute,

3
Miss.Ankita Darekar,

4
Mr.Rupesh Thakare,

5
Mr.Pratik Padwal

1
Asst. Professor,

2,3,4,5
UG Student,

1,2,3,4,5
Computer Engg. Dept. Shivajirao S. Jondhle College of Engineering

& Technology, Asangaon, Maharshatra, India.

1
mailme.vishalshinde@gmail.com,

2
nitinvarkute007bond@gmail.com,

3
ankitadarekar98@gmail.com,

4
rupesh123thakare@gmail.com,

5
padwalpratik3@gmail.com

Abstract - With the pervasiveness of smart phones, location-based services (LBS) have received considerable attention

and become more popular and vital recently. However, the use of LBS also poses a potential threat to user’s location

privacy. In this paper, aiming at spatial range query, a popular LBS providing information about points of interest

(POIs) within a given distance, we present an efficient and privacy-preserving location-based query solution, called

EPLQ. However, Android components may leak permissions, location & user data either carelessly or maliciously.

Therefore, users are required to grant permissions to apps during app installation, which may lead to permission

mismanaged. In this project, it proposes the software that aims to detect location-based permission leakage by

proposing a light-weight mechanism.

Keywords - Android Security, Inter-component communication, Permission leaks, Static Analysis, Location

permissionleakages, Location Based services.

I. INTRODUCTION
1

As smart phones have become more popular, the focus of

mobile computing has shifted from laptops to phones and

tablets. When a user attempts to install the application,

Android will warn the user that the application requires

certain restricted resources (for instance, location data), and

that by installing the application, it is granting permission

for the application to use the specifies resources. If the user

declines to authorize these permissions, the application will

not be installed. However, statically requiring permissions

does not inform the user how the resource will be used once

granted. A maps application, for example, will require

access to the Internet in order to download updated map

tiles, route information and traffic reports. It will also

require access to the phone‟s location in order to adjust the

displayed map and give real-time directions. The

application‟s functionality requires sending location data to

the maps server, which is expected and acceptable given the

purpose of the application. However, if the application is

ad-supported it may also leak location data to advertisers

for targeted ads, which may compromise a user‟s privacy.

Given the only information currently presented to users is a

list of required permissions, a user will not be able to tell

how the maps application is handling her location

information. To address this issue, System present Android

Leaks, a static analysis framework

designed to identify potential leaks of personal information

in Android applications. on a- large scale.

II. RELATED WORK

A. Vulnerability Detection in Smartphone Applications:

Recent researches carried out in the field of Smartphone

security have concentrated mostly on Android operating

system (OS). The security issues in Android are a concern

owning to the fact that it is open source and developing of

android application is very easy. Some of the commonly

noted behaviours were, collecting user information, sending

premium-rate Short Messaging Service (SMS), malware

written for amusement, for credential theft, search engine

fraud and ransom. Some of the algorithms used in android

permission leakage detection and defending are given as

bellows:

Algorithm1: The Algorithm that Extracts the Concrete

Permissions Names (String Analysis)

Input: Method Call Stack, Target Method, Target Method

Parameter

Result: Set of Permission Strings

stack← Method Call Stack;

tm ← Target Method;

tp ← Target Parameter;

pSet ← set ();

pSet ← find Permission (tm, tp);

if pSet is empty then

tp ← getCurrentMethodParameter ();

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Special Issue - iCreate April - 2018

85 | IJREAM_SP180118 Special Issue on iCreate April -2018 © 2018, IJREAM All Rights Reserved.

N ← size(stack)−1;

r ← String Analysis (stack [1...N], stack[N], tp);

pSet ← pSet∪r;

return pSet;

This plug-in performs an intra-method analysis and

manages the following scenarios: either (1) the permission

is directly given as a literal parameter, or (2) the permission

value is initialized in a variable which is given as a

parameter, or (3) an array is initialized with several

permissions and is given as a parameter. In the case where

only a single permission is given to the method, statements

in the unit graph containing a reference to a valid Android

permission String is extracted and the permission added to

the list of the permissions needed by the method under

analysis. In case of an array, all permissions of references to

Android Permission Strings are added to the list. It can

happen that the permission string cannot be found in the

current method MI‟s body. This happens when it is

referenced from a local variable initialized with one of the

current method‟s parameter P. The solution is for the

analysis to go one method down in the method call-stack

(lines6-10). At this point the analysis goes through the

statements of Mi−1 looking for a call to M. When a call is

found the parameter, P is extracted and the string analysis

starts again from there.

Algorithm 2: Capability leak detection

Input: entry points, known method summaries

Output: a set of capability leaks

for each entry point ∈ entry points do

work list = initial state: start of the entry point

states = initial state summaries = known method summaries

for each state ∈ work list does

remove state from work list

if state‟s instruction is a method call then

if a summary does not exist for the target

then summarize (target, summaries);

end

end work list+ = δ(state) − states

states+ = δ(state) end

if a dangerous-call state is flagged then

report the state as a capability leak end.

III. EXISTING SYSTEM

Existing approaches for handling permission leakages focus

entirely on specific analysis and detection of permission

leakages very slowly. They neither focus on detection of

permissions which running background without knowledge

of it to you. nor do the fast detection of permission

leakages. This work handles both of these detections and

defending against permission leakages in android apps.

Recent contributions on detection of leakages deal with the

problem of permission leakages in few android apps and

concentrates only on single permission but, neither these

methods perform effective and fast detection of leakages of

inter app permissions. The detection and defending inter

app permissions introduces the main idea for detecting

permission leakages in android app, as well as the methods

for judging permissions and selecting the most important

permission first which leak user data from android apps.

Android Static Analysis CHEX is the first tool to detect

component hijacking vulnerabilities. They use static

analysis to discover entry points in apps and leverage entry

point permutation techniques to detect the information flows

which lead to privacy leakage. Amandroid provide context

sensitive taint analysis to detect privacy leakage on

Android. Intent Fuzzer leverages fuzzy test to generate

different Intent messages to invoke components of Android

System apps. It requires to modify Android framework to

log which permissions are actually used by the components.

Therefore, it can capture what permissions in these apps

may be exploited by other apps. Intent Fuzzer leverages

fuzzy test to generate different Intent messages to invoke

components of Android System apps. It requires to modify

Android framework to log which permissions are actually

used by the components. Therefore, it can capture what

permissions in these apps may be exploited by other apps.

However, the previous both systems are focused on

detecting intra component sensitive data leaks in single

components of apps and cannot deal with cross-app privacy

leaks.

IV. PROBLEM STATEMENT

Problem being solved: Detection of Location Based

permission leakages.

An android app contains: user data, location data,

permissions related to firmware etc. Each android app has

different permissions. The project objective is to detect

permission leakages and defending against them by finding

leakages in that permissions of android which access user

data without knowing anything to user.

V. PROPOSED SYSTEM

Ad Libraries nearly every ad library this system looked at

leaked phone data and, if available, location information as

well. It hypothesizes that nearly any access of sensitive data

inside ad code will end up being leaked, as ad libraries

provide no separate application functionality which requires

accessing such information. Privacy-preserving POI query

has been studied in LBS as: 1) public LBS and 2)

outsourced LBS. In this paper, it focuses on the latter

setting. In the former setting, there is an LBS provider

holding a spatial database of POI records in plaintext, and

LBS users query POIs at the provider‟s site. In outsourced

LBS, The LBS provider allows authorized users (i.e., LBS

users) to utilize its data through location-based queries.

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Special Issue - iCreate April - 2018

86 | IJREAM_SP180118 Special Issue on iCreate April -2018 © 2018, IJREAM All Rights Reserved.

Algorithm:

Step 1:Take length 9 encryption key from the user.

Step 2:

for(i=1;i<=9;i++)

{

if(!k[i]repeated)

{

find ASCII value of k[i]

temp=Add the digit of k[i] and take mod 9,

if(temp==0)

{

temp=temp+1;

Label 1:if(temp already occupied)

{

temp= temp+1;

goto label 1;

}

}

Label 2: if(temp already occupied)

{

temp= temp+1;

goto label 2;

}

seq[i]=temp;

} //end of if

else

{

j++;

rem[j]=i;

} //end of else

} //end of for loop

int n=1;

while(rem[n]!=0)

{

for(i=1;i<=9;i++)

{

for(k=1;k<=9;k++)

{

if(i==seq[k])

exit();

else

seq[n]=i;

goto label 3;

}

}

Label 3 : n++;

}

Encryption:

encryption()

{

for(i=1;i<=9;i++)

{

insert seq[i]
th

 element of grid to i
th

 position of new enc-grid

}

}

Decryption:

decryption()

{

for(i=1;i<=9;i++)

{

insert i
th

 element of enc-grid to seq[i]
th

value position of new

dec-grid

}

}

VI. WORKING OF ALGORITHM

The general idea of working of proposed system algorithm

is given as bellows:

- This algorithm takes values in two arrays seq [] & rem [].

- After taking array values from the user it started the

calculation of sequence seq [] array values and the

Remaining rem [] array values.

- If any kind of value is repeated then it stores the value of

the index for the future processing.

- Then it again does the processing for remaining repeated

characters.

- Finally, it generates a shuffled values array.

Mathematical Model:

The mathematical model & working of algorithm used in

this system is given as bellows:

1) Data to be encrypted: ABCDEFGHI

(i.e. Divided into nine parts).

2)Make Initial Arrangement of data into grid.

3)Take 9 length of key from user. i.e. For example k [9] =

Karnataka.

4) Check if k is repeated. // For characters other than first

character.5)If not, find the ASCII value of the given k[i] i.e.

For k=75 then calculate as (7+5) %9 =3. 6) Check whether

K is in “seq []”array? If not then add value three (3) into the

array i.e. Seq [1] =3

7) similarly, let‟s do for the remaining characters.

For a=65, (6+5) %9=2 Not in seq [] then seq[2]=2.

For r=82,(8+2) %9=1 Not in seq [] then seq [3] = 1.

For n=78,(7+8) %9=6 Not in seq [] then seq [3] = 6.

For a=65, (6+5) %9=2 repeated seq [2] = 2.

Here, a=65 is repeated. i.e. „a‟ has come second time.

Rem[++j] =i. // i.e. we store index of the „a‟ for future

processing. i.e. seq [5].

For t=84, (8+4) %9=3 is in the seq [] then increment it by 1.

i.e. 3+1=4 Not in the seq [] then seq [6] = 4.

For a=65, (6+5) %9=2 repeated seq [2] = 2.

Here, a=65 is repeated. i.e. „a‟ has come third time.

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Special Issue - iCreate April - 2018

87 | IJREAM_SP180118 Special Issue on iCreate April -2018 © 2018, IJREAM All Rights Reserved.

Rem[++j] =i. // i.e. we store index of the „a‟ for future

processing. i.e. seq [7].

For k=75, (7+5) %9=3 repeated seq [1] = 3.

Here, k=75 is repeated. i.e. „k‟ has come 2
nd

 time.

Rem[++j] =i. // i.e. we store index of the „k‟ for future

processing. i.e. seq [8]

For a=65, (6+5) %9=2 repeated seq [2] = 2.

Here, a=65 is repeated. i.e. „a‟ has come fourth time.

Rem[++j] =i. // i.e. we store index of the „a‟ for future

processing. i.e. seq [9].

Processing for remaining repeated characters:

After First step: seq= [0,3,2,1,6,0,4,0,0,0]and the rem=

[0,5,7,8,9,0,0,0,0,0].

8) now we check which numbers are still available to use in

seq [] and fill them at remaining places sequentially. i.e. we

have 5,7,8,9 remaining to be used in seq [] which are filled

at index 5,7,8,9 respectively of seq [].

9) finally, our seq [] array took like this:

seq [] = [0,3,2,1,6,5,4,7,8,9]. This is the shuffling sequence

we generated by our algorithm.

VII. SYSTEM ARCHITECTURE

Fig.1 System model of outsourced LBS under consideration

LBS provider allows authorized users (i.e., LBS users) to

utilize its data through location-based queries. Therefore,

the LBS provider encrypts the LBS data, and outsources the

encrypted data to the cloud.

LBS User: In this Module, the user sends location-based

queries to the LBS provider (or called the LBS server) and

receives location-based service from the provider.

LBS Provider: In this Module, the LBS provider provides

location-based services to the user. LBS allows clients to

query a service provider.

VIII. DESIGN DETAILS

Fig.2LBS System Home Page

Fig.3LBS System Home Page

Fig.4LBS System Home Page

International Journal for Research in Engineering Application & Management (IJREAM)

ISSN : 2454-9150 Special Issue - iCreate April - 2018

88 | IJREAM_SP180118 Special Issue on iCreate April -2018 © 2018, IJREAM All Rights Reserved.

Fig.5LBS System Home Page

X. CONCLUSION

We have tried to implement paper “Detecting & Defending

Against Permission Leakages In Android” with combining

another paper “EPLQ-Location Based system “using

Location based system(LBS). In this paper, the system has

proposed EPLQ, an efficient privacy protecting solution for

smart phones, which preserves the privacy of user location,

and achieves confidentiality of LBS data.

REFERENCES

[1] Lichun Li, Rongxing Lu, Senior Member, IEEE, and

Cheng Huang, “EPLQ: Efficient Privacy-Preserving

Location-Based Query Over Outsourced Encrypted

Data”, IEEE Internet Of Things Journal, Vol. 3, No.

2, April 2016.

[2] Apple Inc. App store review guidelines. Accessed

March 30th, 2012.

[3] 3. A.P. Felt, E. Chin, S. Hanna, D. Song, and D.

Wagner. Android permissions demystified. In

Proceedings of the 18th ACM conference on Computer

and communications security, pages 627–638. ACM,

2011.

[4] M. Eagle, C. Kruegel, E. Kirda, and G. Vigna. Pio‟s:

Detecting privacy leaks in iOS applications. In

Proceedings of the Network and Distributed System

Security Symposium, 2011.

[5] Smartphone OS Market Share, 2016 Q1,

http://www.statista.com/statistics/266136/global-

market-share-held- by- smart phone-operating-systems/.

[6] EPLQ: Efficient Privacy-Preserving Location-Based

Query Over Outsourced Encrypted Data”

[7] http://www.jpinfotech.org/eplq-efficient-privacy-

preserving-location-based-query-outsourced-encrypted-

data/

[8] Android security and permissions. Accessed

http://d.android.com/guide/topics/security/security.html

[9] Manifest android developers.

https://developer.android.com/reference/android/Manif

est.permission.html

http://www.statista.com/statistics/266136/global-market-share-held-%20by-%20smart%20phone-operating-systems/
http://www.statista.com/statistics/266136/global-market-share-held-%20by-%20smart%20phone-operating-systems/
http://www.jpinfotech.org/eplq-efficient-privacy-preserving-location-based-query-outsourced-encrypted-data/
http://www.jpinfotech.org/eplq-efficient-privacy-preserving-location-based-query-outsourced-encrypted-data/
http://www.jpinfotech.org/eplq-efficient-privacy-preserving-location-based-query-outsourced-encrypted-data/
http://d.android.com/guide/topics/security/security.html
https://developer.android.com/reference/android/Manifest.permission.html
https://developer.android.com/reference/android/Manifest.permission.html

