Vague A Generalized Homeomorphism in Vague Topological Spaces

¹R. Ramya Swetha, Research Scholar, Department of Mathematics ANU, A.P, India.

²Dr. V. Amarendra Babu ,Department of Mathematics, Acharya Nagarjuna University, Nagarjuna Nagar, India.

³Dr.T.Anitha, Department of Mathematics, KL University, Vaddeswaram, Guntur, A.P, India.

¹ramya.swetha19@gmail.com, ²amarendravelisela@ymail.com, ³anitha.t537@gmail.com

Abstract : In this we introduce vague α generalized closed and open mappings, vague α generalized homeomorphism, vague M α generalized homeomorphism, vague contra α generalized continuous mappings and also we derive the relation between various vague contra closed sets.

Keywords — Vague a generalized, Vague a generalized homeomorphism, Vague contra a generalized continuous, vague M a generalized homeomorphism, Vague contra a generalized continuous.

I. INTRODUCTION

Levine[9] started the study of generalized closed sets in topological spaces in 1970. The concept of fuzzy sets was introduced by Zadeh [11] in 1965. Fuzzy topology was introduced by C.LChang[1] in1967. H.Maki ,k.balachandran ,R.Devi [6] introduced the concept of alpha generalized closed sets in topological spaces. The notion of contra continuous was introduced and investigated by Dontchev[3]. After that gau and buhrer[4] introduced the concept of vague sets .

In this paper we introduced the concept vague α generalized continuous mapping ,vague contra α generalized continuous mapping, vague α generalized homeomorphism and vague M α generalized homeomorphism and also we derive some relationships of vague α generalized continuous mappings with other vague generalized closed mappings ,Vague contra continuity ,Vague contra α generalized continuity and then we derive the relationships of vague contra α generalized closed sets with other generalized closed sets.

II. PRELIMINARIES

A vague set V in the universe of discourse P is characterized by two membership functions given by, a true membership function $t_V: P \rightarrow [0,1]$ and a false membership function $f_V: P \rightarrow [0,1]$. The grade of membership of x in the vague set V is bounded by a sub interval $[t_V(x), 1-f_V(x)]$ of [0,1]. This indicates that , if the actual grade of membership $\mu(x)$, then $t_V(x) \leq \mu(x) \leq$ $1-f_V(x)$. The vague set V is written as $V = \{x, < [t_V(x), 1-f_V(x)] > / x \in P\}$, where the interval $[t_V(x), 1-f_V(x)]$ is called the vague value of x in V and is denoted by $V_V(x)$. **Definition2.1[10]:** Let A and B be the vague sets of the form $A=\{z,<[t_A(z),1-f_A(z)] | z \in P\}$ and $B=\{z,<[t_B(z),1-f_B(z)] | z \in P\}$ where P is a universal set , then

$$\begin{split} &1.A \subseteq B \text{ iff } t_A(z) \leq t_B(z) \text{ and } 1\text{-}f_A(z) \leq 1\text{-}f_B(z) \ \forall \ z \in P. \\ &2.A^C == \{z, < [f_A(z), 1\text{-}t_A(z)] \ /z \in P \} \\ &3.A \bigcap B == \{z, < [t_A(z) \land t_B(z), 1\text{-}f_A(z) \land 1\text{-}f_B(z)] \ /z \in P \} \\ &4.AUB == \{z, < [t_A(z) \lor t_B(z), 1\text{-}f_A(z) \lor 1\text{-}f_B(z)] \ /z \in P \}. \end{split}$$

Definition 2.2[10]: A Vague topology on X is a family σ of vague sets in X satisfying the following axioms .

1. $0,1 \in \sigma$ 2. $G_1 \cap G_2 \in \sigma$ for $G_1,G_2 \in \sigma$.

3. $\bigcup G_{i,i \in I} \in \sigma$, for any family $G_i \in \sigma$.

In this paper (X, σ) is called a vague topological space and any vague set in σ is known as a vague open set in X.

Definition 2.3[10]:Let (X, τ) be a vague topological space and $A=\{x, < [t_A(x), 1-f_A(x)]\}$ be a vague set in X. Then the vague interior and vague closure are defined by Vint(A)=U{G/G is a vague open set in X and G is contained in A}, Vcl(A)= \cap {G/G is a vague closed sets in X and G is containing A}.

Definition 2.4[10]:- Let (X, τ) be a vague topological space. A vague set $A = \{x, < [t_A(x), 1-f_A(x)] \}$ of X is called

1. a vague closed set vcl(A)=A. The complement of a vague closed set is vague open set.

2. a vague α closed(V α C) set Vcl(Vint(Vcl(A))) \subseteq A.

Remark :- The complement of above closed sets are open.

Definition 2.5[10]: A vague set $A=\{x, < [t_A(x), 1-f_A(x)]\}$ of a vague topological space (X, τ) is said to be a vague generalized closed set(VGCS) if Vcl(A) \subseteq U whenever A \subseteq

U and U is a vague open set in X, and A^c is a vague generalized open set.

Definition 2.6[10]: A vague set A of a vague topological space (X, τ) is said to be a vague generalized closed set(V α GCS) if V α cl(A) \subseteq U whenever A \subseteq U and U is a vague open set in X and A^c is a vague α generalized open set.

Definition 2.7[8]: Let $f:(X,\tau) \to (y,\sigma)$ is a bijective mapping where (X,τ) and (y,σ) are topological spaces, then f is said to be a homeomorphism if f and f^{-1} are continuous mappings.

Definition 2.8[3]: A function $f:-X \rightarrow Y$ is called contra continuous if the inverse image of each open set in Y is a closed set in X.

III. VAGUE A GENERALISED CLOSED AND OPEN MAPPINGS

Definition 3.1 : A map $g : (P, \tau) \rightarrow (Q, \sigma)$ is called a vague α generalized closed mapping if g(F) is a vague α generalized closed set in Q for each vague closed set 'F' in 'P'.

Example3.2: Let P ={a,b} and Q ={c,d} and G₁={<a,[0.4,0.6] >,< b,[0.5,0.6]>},G₂₌{< a,[0.7,0.8] >,<b ,[0.5,0.7] >}, G₃₌{<a,[0.3,0.8] >,< b,[0.5,0.7]>} . Then $\tau =$ {0,G₁,G₂,1} and $\sigma =$ {0,G₃,1} are vague topological spaces on P and Q respectively. Construct a map g: (P, τ) \rightarrow (Q, σ) by g(a)= a^c =c, g(b)=b^c=d.

Let $A=\{< a,[0.4,0.6] >, <b, [0.4,0.5] >\}$ is a vague closed set in (P,τ) then $g(A) = \{<a,[0.4,0.6] >, <b, [0.5,0.6] >\}$ is a vague α generalized closed set in (Q,σ) .

Definition 3.3 : A map g: $(P, \tau) \rightarrow (Q, \sigma)$ is called a vague α generalized open mapping if g(A) is a vague α generalized open set in Q for each vague open set 'A' in 'P'.

Definition 3.4 : A map $g : (P, \tau) \rightarrow (Q, \sigma)$ is called a vague M α generalized closed mapping if g(A) is a vague α generalized closed set in Q for each vague α generalized closed set 'A' in 'P'.

Example3.5: Let P= {a ,b} and Q ={c ,d} and V₁={<a,[0.5,0.7] >,< b,[0.3,0.5]>},V₂₌{<a,[0.4,0.6]>,< b,[0.6,0.7]>}. Then $\tau=$ {0,V₁,1} and $\sigma=$ {0,V₂,1} are vague topological spaces on P and Q respectively. Define a mapping g :(P , τ) \rightarrow (Q , σ) by g(a)=b=c, g(b)=a=d. Let A={ <a, [0.3,0.4]>,< b ,[0.4,0.6]>} is a vague α generalized closed set in P. So g(A) = { <c,[0.4,0.6]>,< d ,[0.3,0.4]>} is also a vague α generalized closed set in Q.

Definition 3.6: A map $g : (P, \tau) \rightarrow (Q, \sigma)$ is called a vague M α generalized open mapping if g(V) is a vague α generalized open set in Q for each vague α generalized open set 'V' in 'P'.

Definition 3.7: If (P, τ) is a vague topological space and A={x,<t_A(x),1-f_A(x)>} is a vague set in P. Then V α g closure of

A (Vagcl(A)) is defined as Vagcl(A) = \cap {G/G is a vague ag closed set A \subseteq G} and Vag interior of A (Vagint(A)) is defined as Vagint(A) = U{G/G is a vague ag open set G \subseteq A}

Theorem 3.8: Every vague closed mapping is a vague α generalized closed map but not conversely.

proof: If $g: (P, \tau) \rightarrow (Q, \sigma)$ is a vague closed mapping .Let A be a vague closed set in P, g(A) is a vague closed set in Q. Since every vague closed set is a vague α generalized closed set . so g(A) is a vague α generalized closed set in Q. So g is a vague α generalized closed map.

Converse need not be true, it seen from the following example,

Example3.9: Let $P = \{a, b\}$ and $Q=\{c, d\}$ and $G_1=\{<a, [0.5, 0.7] >, < b, [0.3, 0.5] >\}, G_{2=}\{<a, [0.4, 0.6] >, < b, [0.6, 0.7] >\}$. Then $\tau=\{0, G_1, 1\}$ and $\sigma=\{0, G_2, 1\}$ are vague topological spaces on P and Q respectively. Define a mapping $g : (P, \tau) \rightarrow (Q, \sigma)$ by g(a)=b=c, g(b)=a=d, Let $A=\{<a, [0.3, 0.5] >, < b, [0.5, 0.7] >\}$ is a vague closed set. Then $g(A)==\{<a, [0.5, 0.7] >, < b, [0.3, 0.5] >\}$ is a vague α generalised closed set. But g(A) is not a vague closed set.

Theorem 3.10: Every vague α closed map is a vague α generalized closed map but not converse.

proof: If $f:(P,\tau) \rightarrow (Q,\sigma)$ is a vague α closed mapping .Let A be a vague closed set in P. f(A) is a vague closed set in Q. Since every vague α closed set is a vague α generalized closed set .So f(A) is a vague α generalized closed set in Q. So f is a vague α closed map.

Converse may not be true, it seen from the following example,

Example3.11: Let $P = \{a, b\}$ and $Q=\{c, d\}$ and $G_1=\{<x, [0.5, 0.7], [0.3, 0.5]>\}, G_{2=}\{<x, [0.4, 0.6], [0.6, 0.7]>\}$. The $n \tau = \{0, G_1, 1\}$ and $\sigma = \{0, G_2, 1\}$ are vague topological spaces on P and Q respectively. Define a mapping g: $(P, \tau) \rightarrow (Q, \sigma)$ by g(a)=b=d, g(b)=a=c. Let $A=\{<[0.3, 0.5], [0.5, 0.7]>\}$ is a vague closed set in P. So $g(A)=\{<[0.5, 0.7], [0.3, 0.5]>\}$ is a vague α generalized closed set but not vague α closed set in Q.

Theorem 3.12: Every vague M α generalized closed map is a vague α generalized closed map.

proof: If g: $(P,\tau) \rightarrow (Q,\sigma)$ is a vague M α generalized closed mapping .Let F be a vague closed set in Q. F is a vague α generalized closed set in Q. Since g is a vague M α generalized closed map, g(F) is a vague α generalized closed set in Q. So g is a vague α generalized closed map.

Theorem 3.13: If g: (P, τ) \rightarrow (Q, σ) is a vague α generalized closed mapping and A is a vague closed set in P then g_A: A \rightarrow Q is a vague α generalized closed map.

proof: Let $B \subseteq A$ is a vague α generalized closed set in P then B is a vague α generalized closed set in P. Since g is a vague α generalized closed map. g(B) is a vague α generalized closed set in Q. So $g_A: A \to Q$ is a vague α generalized closed map.

Definition 3.14: A map g: $(P, \tau) \rightarrow (Q, \sigma)$ is called a vague α generalized irresolute map if $g^{-1}(V)$ is a vague α generalized closed set in P, for every vague α generalized closed set V in Q.

Theorem 3.15: If $f:(P,\tau) \to (Q,\sigma)$ is a vague α generalized map and $g:(Q,\sigma) \to (R, \gamma)$ are two vague M α generalized maps then gof: $(P,\tau) \to (R, \gamma)$ is a vague α generalized closed map.

proof :Let V be a vague α generalized closed set in (P, τ). This implies f(V) is a vague α generalized closed set in (Q, σ) and then g(f(V)) is a vague α generalized closed set in (R, γ),since g is a V α generalized closed map. Then (gof)(V) is a vague α generalized closed set. So gof is a vague α generalized closed map.

Definition 3.16: Let $f:(P,\tau) \rightarrow (Q,\sigma)$ be a vague α generalized continuous mapping if $f^{1}(F)$ is a vague α generalized closed set in P for every vague closed set F in Q.

Example 3.17 : Let $P = \{a, b\}$ and $Q=\{c, d\}$ and $G_1=\{<a,[0.7,0.8] >, < b,[0.6,0.4]>\}, G_{2=}\{<c,[0.5,0.7] >, < d, [0.4,0.4]>\}$. Then $\tau=\{0,G_1,1\}$ and $\sigma=\{0,G_2,1\}$ are vague topological spaces on P and Q respectively. Define a mapping f: $(P, \tau) \rightarrow (Q, \sigma)$ by f(a)=c, f(b)=d. If $A=\{<c,[0.3,0.5]>, < d$, $[0.6,0.6]>\}$ is a vague closed set in Q. So $f^1(F)=\{<a,[0.6,0.6]>\}$ is a vague α generalized closed set in P. So f is a vague α generalized continuous mapping.

Definition 3.18: Let $f:(P,\tau) \rightarrow (Q,\sigma)$ be a vague $M \alpha$ generalized continuous mapping if $f^{1}(F)$ is a vague α generalized closed set in P for every vague α generalized closed set F in Q.

Example 3.19: Let P = {a ,b} and Q ={c ,d} and G₁={<a,[0.5,0.7] >, < b,[0.4,0.5]>},G₂₌{<c,[0.3,0.4] >, < d, [0.7,0.8]>}.Then τ ={0,G₁,1} and σ ={0,G₂,1} are vague topological spaces on P and Q respectively. Define a mapping f:(P, τ) \rightarrow (Q, σ) by f(a)=c,f(b)=d. Let F={ <c,[0.5,0.7] >, < d, [0.4,0.6]>} is a vague α generalized closed set in Q. So f ¹(F)={<a,[0.5,0.7] >, < b,[0.4,0.6]>} is a vague α generalized continuous mapping.

Theorem 3.20: A map $f : X \to Y$ is a Vag closed map iff Vagcl (f(A)) \subset fVcl(A).

proof : Let $A \subset X$ and $f: X \rightarrow Y$ is a Vag closed map then f (Vcl(A)) is a Vag closed set in Y.

So Vagcl[f(Vcl(A))]=f(Vcl(A)),since $f(A) \subset f(Vcl(A))$,so So Vagcl[f(A)] \subset Vagcl[f(Vcl(A))] = f(Vcl(A)) for all vague subsets A of X. this implies $Vagcl(f(A)) \subset fVcl(A)$.

Conversely, Let A be any vague closed set in (X, τ) . Then A= Vcl(A) and so f (A) =f (Vcl(A)) \supseteq Vagcl f(A), by the hypothesis. since f(A) \subset Vagcl[f(A)].

That is f(A) = Vagcl[f(A)], hence f is a Vagclosed map.

IV.VAGUE αg HOMEOMORPHISM AND VAGUE M αg HOMEOMORPHISM

Definition 4.1: Let $g:(P,\tau) \rightarrow (Q,\sigma)$ is said to be

1. a vague continuous map if $g^{-1}(F)$ is a vague closed set in (P, τ) for any vague closed set F of (Q, σ).

2. a vague α continuous map if g⁻¹(F) is a vague α closed set in (P, τ) for any vague closed set F of (Q, σ).

3. a vague α g continuous map if g ⁻¹(F) is a vague α generalized closed set in (P, τ) for any vague closed set F of (Q, σ). 4. a vague M α g continuous map if g ⁻¹(F) is a vague α generalized closed set in (P, τ) for any vague α generalized closed set F of (Q, σ).

Definition 4.2: If $g : (P, \tau) \rightarrow (Q, \sigma)$ is both one-one ,onto mapping where (P, τ) and (Q, σ) are vague topological spaces, then g is said to be

1.vague homeomorphism if g and g $^{-1}$ are vague continuous mapping.

2.vague α homeomorphism if g and g ⁻¹ are vague alpha continuous mapping.

3.vague αg homeomorphism if g and g⁻¹ are vague alpha generalized continuous mapping.

Definition 4.3: A vague topological space (P, τ) is said to be a vague $_{\alpha g}T_{1/2}$ space if every vague αg closed set is a vague closed set.

Definition 4.4: A vague topological space (P, τ) is said to be a

vague $_{\alpha g} T^{\alpha}_{1/2}$ space if every vague αg closed set is a vague α closed set.

Definition 4.5: A vague topological space (P, τ) is said to be a

 $V_{\alpha g}T_{1/2}^{g}$ space if every vague αg closed set is a vague generalized closed set.

Theorem 4.6: In every vague topological space (P, τ) the following are obvious.

1. Every vague continuous mapping is a vague α continuous mapping.

2 . Every vague α continuous mapping is a vague αg continuous mapping.

Theorem 4.7: Every vague homeomorphism is a vague αg homeomorphism.

Proof: If $g : (P, \tau) \rightarrow (Q, \sigma)$ be a vague homeomorphism .since g is a vague homeomorphism, g and g ⁻¹ are vague

continuous mappings .g and g $^{-1}$ are vague α g continuous mapping, since every vague closed set is a vague α g closed set. so f is vague α g homeomorphism.

Remark 4.8: Converse need not be true, seen from the following example,

 $\label{eq:stample 4.9: Let P={a,b},Q={c,d}, Now \ \tau=\{0,G_1,1\} \ \text{and} \ \sigma=\{0,G_2,1\} \ \text{are vague topological spaces on } P \ \text{and} \ Q \ respectively} , where$

 $G_1 = \{ < x, [0.6, 0.7], [0.5, 0.8] > \}, G_2 = \{ < x, [0.4, 0.8], [0.7, 0.4] > \}.$

Now construct a mapping $g :(P,\tau) \rightarrow (Q,\sigma)$ by g(a)=c, g(b)=d. Then g and g⁻¹ are vague αg continuous mapping but not a vague continuous mapping. So g is a vague αg homeomorphism but not a vague homeomorphism.

Theorem 4.10: Every vague α homeomorphism is a vague α g homeomorphism ,but the converse may not be true .

Proof: Let $g:(P,\tau) \to (Q,\sigma)$ be a vague α homeomorphism . Then g and g ⁻¹ are vague α continuous mappings. This implies g and g ⁻¹ are vague α g continuous mappings . So g is a vague α g homeomorphism.

Example 4.11: Let $P=\{a, b\}, Q=\{u, v\}$. Now $\tau=\{0, G_1, 1\}$ and $\sigma=\{0, G_2, 1\}$ are vague topological spaces on P and Q respectively, where

 $G_1=\{\langle x, [0.6, 0.7], [0.5, 0.8] \rangle\}, G_{2=}\{\langle x, [0.4, 0.8], [0.7, 0.4] \rangle\}.$ Define a mapping g :(P, τ) \rightarrow (Q, σ) by g(a)=u, g(b)=v. Then g and g⁻¹ are vague α g continuous mapping but not a vague α continuous mapping .So g is a vague α g homeomorphism but not a vague α homeomorphism.

Theorem 4.12: Every vague generalized homeomorphism is a vague α g homeomorphism, but the converse is not true in general.

Proof: Let $g : (P, \tau) \rightarrow (Q, \sigma)$ be a vague generalized homeomorphism. Then g and g ⁻¹ are vague generalized continuous mappings. This implies g and g ⁻¹ are vague α g continuous mappings. So g is a vague α g homeomorphism.

Example 4.13: Let P ={a ,b},Q ={c ,d} and G₁={<a ,[0.6,0.7] >,< b,[0.5,0.8]>},G₂₌{<c,[0.4,0.8] >,< d ,[0.7,0.4]>}. Then τ ={0,G₁,1} and σ ={0,G₂,1} are vague topological spaces on P and Q respectively. Define a mapping g :(P, τ) \rightarrow (Q, σ) by g(a)=c ,g(b)=d. Then g and g⁻¹ are vague α g continuous mapping but not a vague generalized continuous mapping .So g is a vague α g homeomorphism but not a vague generalized homeomorphism.

Theorem 4.14: Let $g :(P, \tau) \rightarrow (Q, \sigma)$ be a vague α g homeomorphism then g is a vague generalized homeomorphism if P and Q are $V_{\alpha g} T^{g}_{1/2}$ space.

Proof: Let F be a vague closed set in Q. Then $g^{-1}(F)$ is a vague α generalized closed set in P. By hypothesis, Since P is a $V_{\alpha g}T^{g}_{1/2}$ space. This implies $g^{-1}(F)$ is a vague generalized

closed set in X. Hence g is a vague generalized continuous mapping .By the hypothesis, g⁻¹ is also vague α generalized continuous mapping ,Let E be a vague closed set in P. Then $(g^{-1})^{-1}(E)=g(E)$ is a vague α generalized closed set in Q. Since Q is a $V_{ag}T^{g}_{1/2}$ spaces .This implies g(E) is a vague generalized closed set in X. Hence g⁻¹ is a vague generalized continuous mapping. Therefore g is a vague generalized homeomorphism.

Theorem 4.16: Let $g : (P, \tau) \rightarrow (Q, \sigma)$ be a bijective mapping . If g is a vague α generalized continuous mapping then the following are equivalent.

1.g is a vague α generalized closed mapping.

2.g is a vague α generalized open mapping.

3.g is a vague α generalized homeomorphism.

Proof :

 $1 \rightarrow 2$

Let $g:(P,\tau) \rightarrow (Q,\sigma)$ be a bijective mapping and let g be a vague α generalized closed mapping. This implies $g^{-1}:(Q,\sigma) \rightarrow (P,\tau)$ is a vague α generalized closed mapping. i.e every vague open set in P there is a vague α generalized open set in Q. Hence g^{-1} is an vague α generalized open mapping.

Let $g : (P, \tau) \rightarrow (Q, \sigma)$ be a bijective mapping and let g be a vague α generalized open mapping .This implies $g^{-1} : (Q, \sigma) \rightarrow (P, \tau)$ is a vague α generalized continuous mapping. Hence g and g^{-1} are V α generalized continuous mappings .So g is a vague homeomorphism.

Let g be a vague α generalized homeomorphism .So g and g⁻¹ are vague α generalized continuous mappings. Since every vague closed set in P is a vague α generalized closed set in Q. so g is a vague α generalized closed mapping.

Definition 4.17: A map $g:(P,\tau) \rightarrow (Q,\sigma)$ is called a vague α g irresolute if the inverse image of every α g closed set of (Q,σ) is an α g closed set in (P,τ) .

Definition 4.17: A bijective mapping $g : (P, \tau) \rightarrow (Q, \sigma)$ is called a vague M α generalised homeomorphism if g and g⁻¹ are vague α generalised irresolute mappings.

Theorem 4.18: Every vague M α generalized homeomorphism is an vague α generalized homeomorphism .Converse may not be true.

Proof: Suppose $g :(P, \tau) \rightarrow (Q, \sigma)$ is a vague M α generalized homeomorphism .Let F be a vague closed set in Q. This implies F is a vague α generalized closed set in Q. By hypothesis $g^{-1}(F)$ is a vague α generalized closed set in P. Hence g is a vague α generalized continuous mapping .Let E be a vague closed set in P. This implies E is a vague α generalized in P. Then $(g^{-1})^{-1}(E)$ is a vague α generalized

closed set in Q. Hence g^{-1} is a vague α generalized continuous mapping. So g is a vague α generalized homeomorphism.

Example4.19: Let P ={a ,b},Q ={c ,d} and $\tau = \{0,G_1,1\},\sigma = \{0,G_2,1\}$ are topologies on P and Q where $G_1 = \{<a,[0.6,0.7] >,<b,[0.5,0.8]>\},G_2 = \{<a,[0.4,0.7] >,<b,[0.3,0.6]>\}$. Define a mapping g :(P, τ) \rightarrow (Q, σ) by g(a)=a,g(b)=b.

g and g⁻¹ are the vague α generalized homeomorphism. But g and g⁻¹ are not vague M α generalized homeomorphism .since consider the vague α generalized closed set

A ={<x,[0.4,0.7],[0.3,0.5]>}. But g⁻¹(A) =< [0.4,0.7],[0.3,0.5] > is not a vague α generalized closed set. So f is not a vague M α generalized homeomorphism.

Theorem 4.20:- Suppose $g:(P,\tau) \rightarrow (Q,\sigma)$ is a vague M α generalized homeomorphism then

vagcl(g⁻¹(F)) \subseteq g⁻¹(vacl(F)) for every vague closed set F in Q. **Proof :** Let F be a vague closed set in Q. Then vacl(F) is a vague α closed set in Q. This implies every vague α closed set is a vague α generalized closed set in Q. Since the mapping g is vague α g irresolute .So g⁻¹(vacl(F)) is also a vague α generalized closed set in P. vagcl(g⁻¹(vacl (F)))= g⁻¹(vacl(F)). Now vagcl(g⁻¹(F)) \subseteq vagcl(g⁻¹(vacl (F)))= g⁻¹(vacl(F)). Hence vagcl(g⁻¹(F)) \subseteq g⁻¹(vacl(F)) for every vague closed set F in Q.

Theorem 4.21: Suppose $g : (P, \tau) \rightarrow (Q, \sigma)$ is a vague M α generalized homeomorphism then $v\alpha cl(g^{-1}(F)) = g^{-1}(v\alpha cl(F))$ for vague set F in Q.

Proof: Suppose g is a vague M α generalized homeomorphism. so g is a vague α generalized irresolute mapping. Consider a vague set F in Q. vcl(F) is a vague closed set in Q. This implies vcl(F) is a vague α generalized closed set in Q. By hypothesis g⁻¹(vcl(F)) is also a vague α generalized closed set in Q. since g⁻¹(F) \subseteq g⁻¹(α cl(F)). v α cl(g⁻¹(F)) \subseteq v α cl (g⁻¹(v α cl(F)))=g⁻¹(v α cl(F)). This implies v α cl(g⁻¹(F)) =g⁻¹ (v α cl(F)). Since g is a vague M α generalized homeomorphism, g⁻¹ :(Q, σ) \rightarrow (P, τ) is a vague α generalized irresolute mapping. Consider a vague set g⁻¹(F) in P. Consider v α cl(g⁻¹(F)) is a vague α generalized closed set in P. Hence v α cl(g⁻¹(F)) is a vague α generalized closed set in P. This implies

 $(g^{-1})^{-1}(g^{-1}(F)) \subseteq (g^{-1})^{-1}(vacl(g^{-1}(F)))=g(vacl(g^{-1}(F)))$. Since g^{-1} is an α generalized irresolute mapping. Hence $g^{-1}(vacl(F))$ $\subseteq g^{-1}(g(vacl(f^{-1}(F)))) = vacl (g^{-1}(F))$. i .e $g^{-1}(vacl(F)) \subseteq$ $vacl (g^{-1}(F))$. This implies $acl(g^{-1}(F)) = g^{-1}(acl(F))$.

Theorem 4.22: Composition of two vague M α generalized homeomorphism is a vague M α generalized homeomorphism.

Proof: Let $f:(X,\tau) \to (y,\sigma)$ and $g:(y,\sigma) \to (Z,\mu)$ be any two vague M α generalized homeomorphism. Let A be a vague α generalized closed set in z. This implies $g^{-1}(A)$ is a vague α generalized closed set in Y. This implies $f^{-1}(g^{-1}(A))$ is also vague α generalized closed set in X. Since by the hypothesis, $f^{-1}(g^{-1}(A))$ is also vague α generalized closed set in X. Hence (g of)⁻¹(A) is a vague α generalized closed set in X. Hence g of is a vague α generalized irresolute mapping. Hence g of is a vague α generalized irresolute mapping. Now, let f be a vague α generalized closed set in X. f(F) is a vague α generalized closed set in Y. Then by the hypothesis g(f(F)) is a vague α generalized closed set in Z. This implies g of is a vague α generalized irresolute mapping. Hence g of is vague M α generalized homeomorphism. Hence Composition of two vague M α generalized homeomorphism is a vague M α generalized homeomorphism.

Remark 4.23: The composition of two vague α generalized homeomorphisms need not be a vague α generalized homeomorphism in general.

V. VAGUE CONTRA ALPHA GENERALISED CONTINUOUS MAP

Definition 5.1: A map $g : (P, \tau) \rightarrow (Q, \sigma)$ is said to be a vague contra α generalized continuous mapping if $g^{-1}(A)$ is a vague α generalized closed set in (P, τ) for every vague open set A in (Q, σ) .

Example 5.2: Let $P = \{a, b\}, Q = \{c, d\}, \tau = \{0, G_1, 1\}, \sigma = \{0, G_2, 1\}$ where $G_1 = \{<a, [0.6, 0.7] >, <b, [0.5, 0.8] >\}, G_2 = \{<c, [0.2, 0.9] >, <d, [0.6, 0.3] >\}. A function g is defined as <math>g(a) = a^c = c$ and $g(b) = b^c = d$. So g is a vague contra α generalized continuous mapping.

Theorem 5.3: Every vague contra continuous mapping is a vague contra α generalised continuous mapping but not conversely.

Proof: Let g:(P, τ) \rightarrow (Q, σ) is said to be a vague contra continuous mapping .Let V be an open set in (Q, σ) this implies g⁻¹(V) is a vague closed set in (P, τ).Since every vague closed set is a vague α generalized closed set in (P, τ).so g is vague contra α generalized continuous mapping.

Example 5.4 :-Let $X = \{a, b\}$ and $Y = \{u, v\}, \tau = \{0, G_1, 1\}, \sigma$

 $= \{ 0, G_2, 1 \}$ where

 $G_1 = \{ <x, [0.6, 0.7], [0.5, 0.8] > \}, G_{2=} \{ <x, [0.2, 0.6], [0.6, 0.3] > \}.f$ is a vague contra α generalized continuous mapping. But not a vague contra continuous mapping.

Theorem 5.7: Let $h:(P,\tau) \rightarrow (Q,\sigma)$ be a bijective mapping .suppose that one of the following properties hold.

 $\begin{array}{l} 1.h^{-1}(vcl(V)) \subseteq vint(vagcl(h^{-1}(V))) \mbox{ for each vague set } V \mbox{ in } Q. \\ 2.vcl(vagint(h^{-1}(V))) \subseteq h^{-1}(vint(V)) \mbox{ for each vague set } V \mbox{ in } Q. \end{array}$

 $3.h(vcl(vagint(K))) \subseteq vint(h(K)))$ for each vague set K in P.

4. $h(vcl(K)) \subseteq vint(h(K))$) for each vague set K in P then h is a vague contra α generalized continuous mapping.

Proof : $1 \Longrightarrow 2$

This is obvious ,by taking the complements on both sides. $2 \Longrightarrow 3$

vcl $(v\alpha gint(h^{-1}(V))) \subseteq h^{-1}(vint(V))$ for each vague set V in Q. Let h(K) = V, implies $K = h^{-1}(V)$ vcl $(v\alpha gint(K)) \subseteq h^{-1}(vint(f(K)))$.

$3 \Longrightarrow 4$

 $h(vcl(vagint(K)) \subseteq vint(h(K)))$.

vagint(K)=K, since K is a vagos in P So $h(vcl(K)) \subseteq vint(h(K))$.

Suppose 4 holds, Let K be a vag open set in P

 $h^{-1}(K)$ is a vague open set in P and vagint($h^{-1}(K)$) is a Vagos in P.

Hence $h(vcl(vagint(h^{-1}(K))) \subseteq vint (h(vagint(h^{-1}(K)))) = vint (K)=K$

Therefore

vcl(vagint($h^{-1}(K)$)= $h^{-1}[h(vcl(vint(<math>h^{-1}(K)$)) \subseteq $h^{-1}(K)$ Now vcl(vint($h^{-1}(K)$) \subseteq vcl(Vagint($h^{-1}(K)$) $\subseteq h^{-1}(K)$ Thus h is a VCaG continuous mapping.

Theorem 5.8:-(i) Let $f:(P,\tau) \rightarrow (Q,\sigma)$ be a vague contra α generalized continuous map, $g:(Q,\sigma) \rightarrow (R,\mu)$ is a vague continuous map. Then g of: $(P,\tau) \rightarrow (R,\mu)$ is a vague contra α generalized continuous map,

(ii) If f is a vague contra α generalized continuous map, g is a vague continuous map then gof is a vag continuous map. (iii) If f is a vag irresolute map, g is a vag continuous map then gof is a vague contra α generalized continuous map.

Theorem 5.9: A mapping $h:(P,\tau) \rightarrow (Q,\sigma)$ be a vague contra α generalized continuous map, where P is a $V \alpha gT1_{/2}$ space iff $h^{-1}(v\alpha gcl((V))) \subseteq v\alpha gint(h^{-1}(vcl(V)))$ for every vague set V in Q.

Proof :

Necessity: - Let V be a vague set in Q .Then vcl(V) is a vague closed set in Q .By Hypothesis,

 $h^{-1}(v\alpha cl((V)))$ is a vag open set in P. Since P is a V $_{\alpha G}T_{1/2}$ space, $h^{-1}(vcl((V)))$ is a vague α g open set in P.

 $h^{-1}(vagcl((V))) \subseteq h^{-1}(vcl((V))) = vagint(h^{-1}(vcl(V))).$

Sufficiency: - Let V be a vague closed in Q then Vcl(V)=V, By hypothesis,

 $h^{-1}(vagcl((V))) \subseteq Vagint(h^{-1}(vcl(V)) = vagint(h^{-1}(V)) \subseteq h^{-1}(V)$.so h is a vague αg open set in P. So h is a vague contra α generalized continuous mapping.

REFERENCES

- Chang .C. ,Fuzzy topological spaces, J. Math. Anal. Appl.,24,1968,182-190.
- [2] Coker.D.,An introduction to fuzzy topological spaces, fuzzy sets and systems 88,1997,81-89.
- [3] Dontchev.J,Contra continuous functions and strongly Sclosed spaces ,Internat.J.Math.&Math .Set.,Vol 19 No 2(1996) 303-310.
- [4] Gau,W.L.Buehrer.D.J.,Vague sets, IEEE Trans, systems man and sybernet,23(2)
- [5] Generalised pre closed sets in vague topological spaces, International journal of applied research 2016, 2(7), 893-900.
- [6] Maki H, Balachandran K, Devi R. Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 1994; 15:51-63.
- [7] Maki. H, Devi. R, Balachandran. K, Generalized α- closed sets in topology, Bull. Fukuoka Univ. Ed. Part III 42 (1993) 13-21.
- [8] Mashhour A.S., Hasanein I.A. and El-Deeb S.N., α continuous and α -open mappings., Acta Math. Hung, 41(3-4)(1983) 213-218.
- [9] Levine. N, Generalized closed sets in topological spaces, Rend. Circ. Mat. Palermo 19 (1970) 89-96
- [10] Vague generalized α -closed sets in topological spaces, International journal of mathematical archive 7(8),2016,23-29.
- [11] Zadeh LA, Fuzzy Sets. Information and Control. 1965; 8:338-335.