

Weakly-R₀ Type Spaces on Pre-Semi Closed Sets in Topological Ordered Spaces

¹Dr. V. Amarendra Babu, ²P. Rajasekhar

¹Assistant Professor, ²Research scholar, ^{1,2}Department of mathematics, Acharya Nagarjuna University,

Nagarjuna Nagar, Guntur (District) A.P, India.

¹amarendravelisela@ymail.com, ²pathururaja1@gmail.com

Abstract: In this paper we define some new separation axioms of type Weakly- R_0 spaces and we introduced weakly ps-i- R_0 , weakly ps-d- R_0 , weakly ps-b- R_0 spaces for topological ordered spaces and we verify the relationship between these spaces to other spaces in topological ordered spaces.

Keywords — weakly ps-i- R_0 , weakly ps-d- R_0 , weakly ps-b- R_0 and topological ordered spaces.

I. INTRODUCTION

A topological ordered space [8] is a triple (X, τ, \leq) , where τ is topology on X and \leq is a partial ordered on X. Let (X, τ, \leq) be a topological ordered spaces, for any $x \in X$, $[x, \rightarrow] = \{y \in X \mid x \in X\}$ $x \le y$ and $[\leftarrow, x] = \{y \in X \mid y \le x\}$. A sub set A of a topological ordered space(X, τ, \leq) is said to be increasing [8] if A= i(A) and decreasing [8] if A= d(A), where i(A) = $U_{a \in A}$ $[a,\rightarrow]$ and $d(A) = U_{a\in A}[\leftarrow,a]$. A sub set A of a topological ordered space (X,τ,\leq) is said to be balanced [8] if it is both increasing and decreasing. Let (X,τ) be a topological space and A be a sub set of X, the interior of A is (denoted by int (A)) is the union of all open sets of A and closure of A (denoted by cl(A)) is the intersection of all closed super sets of A,C(A) denotes the complement of A. Weakly $-R_0$ space was introduced by G. Di Maio [4] in 1984 now in the present paper we introduced weakly ps-i-R₀, weakly ps-d-R₀, weakly ps-b-R₀ spaces for topological ordered spaces.

II.PRELIMINARIES

Definition 2.1: A sub set A of a topological space (X,τ) is called

(i) semi-open set [5] if $A \subseteq cl(int(A))$ and semi-closed if $int(cl(A)) \subseteq A$.

(ii) α -open set [10] if $A \subseteq int(cl(int(A)))$ and α -closed set[2] if $cl(int(cl(A))) \subseteq A$.

(iii) pre-open set [7] A \subseteq int(cl(A)) and pre-closed if cl(int(A)) \subseteq A.

(iv) regular open set if A = int(cl(A)) and regular closed set if A = cl(int(A)).

Definition 2.2: A sub set A of a topological space (X,τ) is called

(i) Pre-semi-closed set (briefly ps-closed) [12] if $spcl(A) \subseteq U$ and U is g-open in (X,τ) .

(ii) Ψ - closed [11] if scl(A) \subseteq U whenever A \subseteq U and U is sg-open in (X, τ).

(iii) Generalized α -closed set(briefly g α -closed) [6] if α cl(A) \subseteq U whenever A \subseteq U and U is α -open in (X, τ).

Definition 2.3: [10] A sub set A of a topological ordered space (X,τ,\leq) is called

(i) An increasing (resp. decreasing, balanced) semi-closed set if it is both increasing (resp. decreasing, balanced) and semi closed set.

(ii) An increasing (resp. decreasing, balanced) α -closed set if it is both increasing

(resp .decreasing, balanced) and α -closed set.

(iii) An increasing (resp .decreasing, balanced) pre-closed set if it is both increasing

(resp .decreasing, balanced) and pre-closed set.

(iv) An increasing (resp .decreasing, balanced) regularclosed set if it is both increasing

(resp .decreasing, balanced) and regular-closed set.

Definition 2.4:[10] A sub set A of a topological ordered space (X, τ, \leq) is called

(i) psi (resp.psd, psb) closed set if it is both pre-semi and increasing (resp.decreasing, balanced) closed set.

(ii) Ψ i (resp. Ψ d, Ψ b) closed set if it is both increasing (resp. decreasing, balanced) and Ψ -closed set.

(iii) gai (resp. gad, gab) closed set if it is both increasing (resp. decreasing, balanced) and ga-closed.

Definition 2.5: A topological space (X,τ) is called

(i) R₀ space [2] if cl {*x*} ∈ G whenever *x* ∈ G ∈ τ.
(ii) weakly -R₀ [4] if ∩_{*x*∈X} cl {*x*} = φ.

(iii) weakly-i-semi-R₀ space [1] (resp.d-semi-R₀, b-semi-R₀) if $\bigcap_{x \in X} \operatorname{iscl}{x} = \phi$ (resp. $\bigcap_{x \in X} \operatorname{dscl}{x} = \phi$, $\bigcap_{x \in X} \operatorname{bscl}{x} = \phi$)

III. W-R0 TYPE SPACES ON PSI (RESP. PSD, PSB) CLOSED SETS IN TOPOLOGICAL ORDERED SPACES

We introduce the following definitions.

Definition 3.1: A topological ordered space (X, τ, \leq) is called

(i) Weakly ps-i-R₀ (resp. ps-d-R₀, ps-b-R₀) space if $\bigcap_{x \in X}$ psicl{x} = ϕ (resp. $\bigcap_{x \in X}$ psdcl{x} = ϕ , $\bigcap_{x \in X}$ psbcl{x} = ϕ).

(ii) Weakly Ψ -i-R₀ (resp. Ψ -d-R₀, Ψ -b-R₀) space if $\cap_{x \in X}$ Ψ icl $\{x\} = \phi$ (resp. $\cap_{x \in X} \Psi$ dcl $\{x\} = \phi$, $\cap_{x \in X} \Psi$ bcl $\{x\} = \phi$).

(iii) Waekly $g\alpha$ -i- R_0 (resp. $g\alpha$ -d- R_0 , $g\alpha$ -b- R_0) space if $\bigcap_{x \in X} g\alpha$ icl $\{x\} = \phi$ (resp. $\bigcap_{x \in X} \alpha$ dcl $\{x\} = \phi$, $\bigcap_{x \in X} g\alpha$ bcl $\{x\} = \phi$).

(iv) Weakly r-i-R₀ (resp. r-d-R₀, r-b-R₀) spaces if $\bigcap_{x \in X}$ ricl{x} = ϕ (resp. $\bigcap_{x \in X}$ rdcl{x} = ϕ , $\bigcap_{x \in X}$ rbcl{x} = ϕ).

(v) Weakly i- α - R_0 (resp. $d-\alpha$ - R_0 , $b-\alpha$ - R_0) space if $\cap_{x \in X}$ iacl{x} = ϕ (resp. $\cap_{x \in X} dacl{x}$ = ϕ , $\cap_{x \in X} bacl{x}$ = ϕ).

(vi) Weakly i-R₀ (resp. d-R₀, b-R₀) space if $\bigcap_{x \in X} \operatorname{icl}\{x\} = \phi$ (resp. $\bigcap_{x \in X} \operatorname{dcl}\{x\} = \phi$, $\bigcap_{x \in X} \operatorname{bcl}\{x\} = \phi$).

(vii) weakly i-pre-R₀ (resp. d-pre-R₀, **b**-pre-R₀) space if $\bigcap_{x \in X} \operatorname{ipcl}{x} = \phi$ (resp. $\bigcap_{x \in X} \operatorname{dpcl}{x} = \phi$, $\bigcap_{x \in X} \operatorname{bpcl}{x} = \phi$).

Theorem 3.2:

- (i) Every weakly Ψ-i-R₀ space is weakly ps-i-R₀ space.
 (ii) Every weakly i-semi-R₀ space is weakly ps-i-R₀
- space.
- (iii) Every weakly i- α -R₀ space is weakly ps-i-R₀ space. The Englishing the space is the space of the
- (iv) Every weakly $i-R_0$ space is weakly $ps-i-R_0$ space.
- (v) Every weakly i-pre- R_0 space is weakly ps-i- R_0 space.
- (vi) Every weakly $g\alpha$ -i- R_0 space is weakly ps-i- R_0 space.
- (vii) Every weakly r-i- R_0 space is weakly ps-i- R_0 space.

Proof: (i)

Let (X,τ,\leq) be any weakly Ψ -i-R₀ space .

 $\Rightarrow \cap_{x \in X} \Psi icl\{x\} = \phi. \text{ Every } \Psi i\text{-closed set is psi-closed set.}$ We have $psicl\{x\} \subseteq \Psi icl\{x\}, \forall x \in X.$

 $\Rightarrow \cap_{x \in X} \operatorname{psicl}\{x\} \subseteq \cap_{x \in X} \operatorname{\Psiicl}\{x\}. \text{ Since } \cap_{x \in X} \operatorname{\Psiicl}\{x\} = \phi,$ we have $\cap_{x \in X} \operatorname{psicl}\{x\} = \phi$. Therefore (X, τ, \leq) is weakly psi-R₀ space. Hence every weakly Ψ -i-R₀ space is weakly psi-R₀ space.

Similarly we can prove (ii), (iii), (iv), (v), (vi), (vii).

Remark 3.3: The converse of the above theorem is not true in general it can be seen in the following example.

Example 3.4:

- (i) Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{a, c\}\}$ and $\leq = \{(a, a), (b, b), (c, c), (b, a)\}$ be a topological ordered space. Then (X, τ, \leq) is a weekly ps-i-R₀ space but not weakly Ψ -i-R₀ space.
- (ii) Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{a, c\}\}$ and $\leq = \{(a, a), (b, b), (c, c), (b, a)\}$ be a topological ordered space. Then (X, τ, \leq) is a weekly ps-i-R₀ space but not weakly i-semi-R₀ space.
- (iii) Let X = {a, b, c}, $\tau = {\phi, X, {a}, {b}, {a, b}}$ and $\leq = {(a, a), (b, b), (c, c)}$ be a topological ordered space. Then (X, τ, \leq) is a weekly ps-i-R₀ space but not weakly i- α -R₀ space.
- (iv) Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\leq = \{(a, a), (b, b), (c, c),\}$ be a topological ordered space. Then (X, τ, \leq) is a weekly ps-i- R_0 space but not weakly i- R_0 space.
- (v) Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\leq = \{(a, a), (b, b), (c, c), \}$ be a topological ordered space. Then (X, τ, \leq) is a weekly ps-i-R₀ space but not weakly i-pre-R₀ space.
- (vi) Let X = {a, b, c}, $\tau = {\phi, X, {a}, {b}, {a, b}}$ and $\leq = {(a, a), (b, b), (c, c), (a, b), (a, c)}$ be a topological ordered space. Then (X, τ, \leq) is a weekly ps-i-R₀ space but not weakly $g\alpha$ -i-R₀ space.
- (vii) Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{a, c\}\}$ and $\leq = \{(a, a), (b, b), (c, c), \}$ be a topological ordered space. Then (X, τ, \leq) is a weekly ps-i-R₀ space but not weakly r-i-R₀ space.

Example 3.5:

(i) Every weakly Ψ -d-R₀ space is weakly ps-d-R₀ space.

- (ii) Every weakly d-semi- R_0 space is weakly ps-d- R_0 space.
- (iii) Every weakly $d-\alpha-R_0$ space is weakly $ps-d-R_0$ space.
- (iv) Every weakly $d-R_0$ space is weakly ps-d-R₀ space.
- (v)Every weakly d-pre- R_0 space is weakly ps-d- R_0 space.
- (vi) Every weakly $g\alpha$ -d- R_0 space is weakly ps-d- R_0 space.
- (vii) Every weakly r-d- R_0 space is weakly ps-d- R_0 space.

Proof: (i)

Let (X,τ,\leq) be any weakly Ψ -d-R₀ space.

 $\Rightarrow \cap_{x \in X} \Psi dcl\{x\} = \phi.$ Every Ψd -closed set is psd-closed set.

We have $psdcl{x} \subseteq \Psi dcl{x}, \forall x \in X$.

 $\Rightarrow \cap_{x \in X} \operatorname{psdcl}\{x\} \subseteq \cap_{x \in X} \operatorname{\Psidcl}\{x\}. \text{ Since } \cap_{x \in X} \operatorname{\Psidcl}\{x\} = \phi, \text{ we have } \cap_{x \in X} \operatorname{psdcl}\{x\} = \phi. \text{ Therefore } (X, \tau, \leq) \text{ is weakly } \operatorname{ps-d-R_0} \operatorname{space}. \text{ Hence every weakly } \Psi\text{-d-R_0} \operatorname{space} \text{ is weakly } \operatorname{ps-d-R_0} \operatorname{space}.$

Similarly we can prove (ii), (iii), (iv), (v), (vi), (vii).

Remark 3.6: The converse of the above theorem is not true in general it can be seen in the following example.

Example 3.7:

- (i) Let X = {a, b, c}, $\tau = {\phi, X, {a}, {a, c}}$ and $\leq = {(a, a), (b, b), (c, c), (a, c), (b, c)}$ be a topological ordered space. Then (X,τ, \leq) is a waekly ps-d-R₀ space but not weakly Ψ -d-R₀ space.
- (ii) Let X = {a, b, c}, $\tau = {\phi, X, {a}, {a, c}}$ and $\leq = {(a, a), (b, b), (c, c), (a, c), (b, c)}$ be a topological ordered space. Then (X,τ,\leq) is a weekly ps-d-R₀ space but not weakly d-semi-R₀ space.
- (iii) Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\leq = \{(a, a), (b, b), (c, c), (a, b), (c, b)\}$ be a topological ordered space. Then (X, τ, \leq) is a weakly ps-d-R₀ space but not weakly d- α -R₀ space.
- (iv) Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{a, c\}\}$ and $\leq = \{(a, a), (b, b), (c, c), (a, b), (c, b)\}$ be a topological ordered space. Then (X, τ, \leq) is a weakly ps-d-R₀ space but not weakly d-R₀ space.
- (v) Let X = {a, b, c}, $\tau = {\phi, X, {a}, {b}, {a, b}}$ and $\leq = {(a, a), (b, b), (c, c), (a, c), (b, c)}$ be a topological ordered space. Then (X, τ, \leq) is a weakly ps-d-R₀ space but not weakly d-pre-R₀ space.
- (vi) Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\leq = \{(a, a), (b, b), (c, c), (a, b), (c, b)\}$ be a topological ordered space. Then (X, τ, \leq) is a weakly ps-d-R₀ space but not weakly $g\alpha$ -d-R₀ space.

Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\leq = \{(a, a), (b, b), (c, c), (a, b), (c, b)\}$ be a topological ordered space. Then (X, τ, \leq) is a weekly ps-d-R₀ space but not weakly r-d-R₀ space.

Theorem 3.8:

(i) Every weakly Ψ -b-R₀ space is weakly ps-b-R₀ space.

- (ii) Every weakly b-semi- R_0 space is weakly ps-b- R_0 space.
- (iii) Every weakly $b \alpha R_0$ space is weakly $ps b R_0$ space.
- (iv) Every weakly $b-R_0$ space is weakly $ps-b-R_0$ space.
- (v)Every weakly b-pre- R_0 space is weakly ps-b- R_0 space.
- (vi) Every weakly $g\alpha$ -b- R_0 space is weakly ps-b- R_0 space.
- (vii) Every weakly r-b- R_0 space is weakly ps-b- R_0 space.

Proof: (i)

Let (X,τ,\leq) be any weakly Ψ -b-R₀ space .

 $\Rightarrow \bigcap_{x \in X} \Psi bcl\{x\} = \phi.$ Every Ψb -closed set is psb-closed set.

We have $psbcl{x} \subseteq \Psi bcl{x}, \forall x \in X$.

 $\Rightarrow \bigcap_{x \in X} \text{psbcl}\{x\} \subseteq \bigcap_{x \in X} \Psi \text{bcl}\{x\}. \text{ Since } \bigcap_{x \in X} \Psi \text{bcl}\{x\} = \phi, \text{ we have } \bigcap_{x \in X} \text{psbcl}\{x\} = \phi. \text{ Therefore } (X, \tau, \leq) \text{ is weakly } \text{ps-b-}R_0 \text{ space. Hence every weakly } \Psi \text{-b-}R_0 \text{ space is weakly } \text{ps-b-}R_0 \text{ space.}$

Similarly we can prove (ii), (iii), (iv), (v), (vi), (vii).

Remark 3.9: The converse of the above theorem is not true in general it can be seen in the following example.

Example 3.10:

- (i) Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{a, c\}\}$ and $\leq = \{(a, a), (b, b), (c, c), (a, c)\}$ be a topological ordered space. Then (X, τ, \leq) is a waekly ps-b-R₀ space but not weakly Ψ -b-R₀ space.
 - (ii) Let X = {a, b, c}, $\tau = {\phi, X, {a}, {a, c}}$ and $\leq = {(a, a), (b, b), (c, c), (b, a)}$ be a

topological ordered space. Then (X,τ,\leq) is a weekly ps-b-R₀ space but not weakly b-semi-R₀ space.

- (iii) Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{a, c\}\}$ and $\leq = \{(a, a), (b, b), (c, c), (a, c)\}$ be a topological ordered space. Then (X, τ, \leq) is a weakly ps-b-R₀ space but not weakly b- α -R₀ space.
- (iv) Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\leq = \{(a, a), (b, b), (c, c), (a, c)\}$ be a topological ordered space. Then (X, τ, \leq) is a weakly ps-b-R₀ space but not weakly b-R₀ space.
- (v)Let X = {a, b, c}, $\tau = {\phi, X, {a}, {a, c}}$ and $\leq = {(a, a), (b, b), (c, c), (b, a)}$ be a topological ordered space. Then (X, τ, \leq) is a weakly ps-b-R₀ space but not weakly b-pre-R₀ space.

- (vi) Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\leq = \{(a, a), (b, b), (c, c), (a, c)\}$ be a topological ordered space. Then (X, τ, \leq) is a weakly ps-b-R₀ space but not weakly $g\alpha$ -b-R₀ space.
- (vii) Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\leq = \{(a, a), (b, b), (c, c), (a, c)\}$ be a topological ordered space. Then (X, τ, \leq) is a weekly ps-b-R₀ space but not weakly r-b-R₀ space.

REFERENCES

- K.Bhagya lakshmi, J.Venkateswara rao W-R0 type spaces in topological ordered spaces Archimedes J.Maths,4(3)(2014),129-147.
- [2] S.G.Crossely and S.K.Hilderbrand, semiclouser, Texas. J. sci;22(1971), 99-122
- [3] A.S.Davis, Indexed systems of neighbourhoods for general topological spaces, Amar. Math. month 68(1961)886-93.
- [4]G.Di Maio, A separation axioms weaker than R0, Indian J.Pure math.16(19850373-375).
- [5] N.Levine, semi –open sets and semi-continuity in topological spaces, Amar.math. monthly 70(1963),36-41.
- [6] H.Maki, R.Devi and K.Balachandran, generalized αclosed sets in topology, Bull.FUKUOKA Univ.Ed. part-III,42(1993),13-21.
- [7] A.S.Mashour, M.E.Abd EI-Monses and S.N.EI-Deep, On pre-continuous mappings, proc. Math and phys .soc.Egypt, 53(1982),47-53.
- [8] L.Nachbin topology and order, D.Van Nostrand inc., Engineering App Princeton new jersy (1965).
- [9] O. Njastand , on some clases of nearly open sets , pacific j.mith ,15(1965) ,961-970.
- [10] P.Rajasekhar, V.Amarendra Babu and M.K.R.S. Veerakumar Pre-semi closed type sets in topological ordered spaces, Bessel J.Math., 5(1)(2015),25-40.
- [11] M.K.R.S. Veera kumar, between semi- closed sets and semi-pre-closed sets,Rend. Istit.Mat. Univ. Triest ; XXXII (2000), 25-41.
- [12] M.K.R.S. Veera kumar , pre-semi closed sets ,Indian j.math., 44(2)(2002). 165-181.