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Abstract: Medicine was once largely free of Mathematics. Genetics is riddled with Probability and Statics, Matrices and 
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I. INTRODUCTION 

Medicine was once largely free of Mathematics, but 

chemical trials call for Mathematical Statistics, the 

circulation of blood is becoming a topic for hydrodynamist, 

genetics is riddled with Probability and Statistics, Matrices, 

Linear Algebra and advanced Algebra, Orthopedics and 

Oncology deals with directional data analysis  and many to 

mention. The study of applications of mathematical 

modeling and mathematical techniques leads to get an 

insight into the problems of biosciences. Mathematical 

biosciences are mainly concerned with Mathematical 

Modeling in Biology and medicine and deal with those 

areas of biosciences which have already been 

mathematicized. 

One of the disciplines included in Mathematical 

Biosciences is Mathematical Genetics which deals with the 

transfer of genetic characteristics from generation to 

generation through the action of genes. 

Motivated by the applications of Mathematics in various 

angles of medicine, contributions of mathematical modeling 

in Genetics are surveyed to initiate research. As 

Biomathematics is today a growing and essential adjunct to 

the further development of the biological and medical 

sciences, here works on studies of mathematical genetics 

are reviewed and some of the problems are exercised. 

II. SURVEY OF LITERATURE 

Bernstein worked on Demonstration math ematique de la 

loid'heredit  de Mendel. in 1923.Etheringtonpresented 

Genetic algebras in 1939 and Non-associative algebra and 

the symbolism of genetics in 1941. Schafer published 

Structure of genetic algebras in 1949. Mendel authored 

Experiments in Plant-Hybridization in1959.Special train 

algebras arising in genetics was developed by Gonshorin 

1960. Holgate presented Sequences of powers in genetic 

algebras in1967. Genetic algebras associated with sex 

linkagewas published in 1970. In 1971Lyubichworked on 

Basic concepts and theorems of the evolutionary genetics of 

free populations. McHale and Ringwood. Haldane studied 

linearisation of baric algebras in 1983. Contributions to 

genetic algebras was published in 1971. W¨orz-

Busekroscontributed The zygotic algebra for sex-linkage in 

1974. The zygotic algebra for sex-linkage. II was published 

in 1975. W¨orz-Busekrosdeveloped Algebras in Genetics 

in1980. Abraham worked on Linearizing quadratic 

transformations in genetic algebras in 1980. 

Peresipresented On baric algebras with prescribed 

automorphisms in 1986.  

In 2015 Frederik Nijhout et.al., using mathematical models 

to understand metabolism, genes, and disease, BMC 

Biology. Nestor et.al., developed The (Mathematical) 

Modeling Process in Biosciences, in 2015. Traykov et.al., 

published Mathematical models in genetics, Russian 

Journal of Genetics 2016 

III. SIMPLE MENDELIAN INHERITANCE 

As a natural first example, we consider simple Mendelian 

inheritance for a single gene with two alleles A and a. In 

this case, two gametes fusing (or reproducing) to form a 

zygote gives the multiplication table shown in Table 4.1, 

which in freshman biology class might be called a Punnett 

square for simple Mendelian inheritance. 

Table.1. Alleles passing from gametes to zygotes 

 A A 

A AA Aa 

A aA Aa 

Table.2.Multiplication table of the gametic algebra 

 A A 

A A  1
2

A a  

A  1
2

a A  A 

The zygotes AA and aa are called homozygous, since they 

carry two copies of the same allele. In this case, simple 

Mendelian inheritance means that there is no chance 
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involved as to what genetic information will be inherited in 

the next generation; i.e., AA will pass on the allele A and aa 

will pass on a. However, the zygotes Aa and aA (which are 

equivalent) each carry two different alleles. These zygotes 

are called heterozygous. The rules of simple Mendelian 

inheritance indicate that the next generation will inherit 

either A or a with equal frequency. So, when two gametes 

reproduce, a multiplication is induced which indicates how 

the hereditary information will be passed down to the next 

generation? This multiplication is given by the following 

rules: 

 (1) A A A   

(2) 1 1
2 2

A a A a    

(3) 1 1
2 2

a A a A    

(4) a a a   

Rules (1) and (4) are expressions of the fact that if both 

gametes carry the same allele, then the O spring will inherit 

it. Rules (2) and (3) indicate that when gametes carrying A 

and a reproduce, half of the time the O spring will inherit A 

and the other half of the time it will inherit a. These rules 

are an algebraic representation of the rules of simple 

Mendelian inheritance. This multiplication table is shown in 

Table.2. We should point out that we are only concerning 

ourselves with genotypes (gene composition) and not 

phenotypes (gene expression). Hence we have made no 

mention of the dominant or recessive properties of our 

alleles. 

Now that we've defined a multiplication on the symbols A 

and a we can mathematically de ne the two dimensional 

algebra over  with basis  ,A a  and multiplication table 

as in Table.2. This algebra is called the gametic algebra for 

simple Mendelian inheritance with two alleles. 

But gametic multiplication is just the beginning! In order 

for actual diploid cells (or organisms) to reproduce, they 

must first go through a reduction division process. 

Table.3. Multiplication table of the zygotic algebra 

for simple Mendelian inheritance 

 AA Aa Aa 

AA AA  1
2

AA Aa  Aa 

Aa  1
2

AA Aa  1 1 1
2 2 2

AA Aa aa    1
2

Aa aa  

Aa Aa  1
2

Aa aa  Aa 

So that only one set of alleles is passed on. For humans this 

occurs when males produce sperm and females produce 

eggs. When reproduction occurs, the hereditary information 

is then passed on via the gametic multiplication we've 

already defined. Therefore, when two zygotes reproduce 

another multiplication operation is formed taking into 

consideration both the reduction division process and 

gametic multiplication. In our example of simple Mendelian 

inheritance for one gene with the two alleles A and a, 

zygotes have three possible genotypes: AA, aa, and Aa. 

Let's consider the case of two zygotes both with genotype 

Aa reproducing. The reduction division process splits the 

zygote and passes on one allele for reproduction. In the 

case of simple Mendelian inheritance the assumption is that 

both alleles will be passed on with equal frequency. Thus, 

half the time A gets passed on and half the time a does. We 

represent this with the “frequency distribution” 1 1
2 2

A a . 

Therefore, symbolically Aa Aa  becomes 

   1 1 1 1
2 2 2 2

A a A a    

Formally multiplying these two expression together results 

in  1 1 1
4 2 4

Aa Aa aa   

using the notion that aA Aa . In this way, zygotic 

reproduction produces the multiplication table shown in 

Table 4.3. So we can de ne the three dimensional algebra 

over  with basis  , ,AA Aa aa  and multiplication table as in 

Table 4.3. It is called the zygotic algebra for simple 

Mendelian inheritance with two alleles. The process of 

constructing a zygotic algebra from the original gametic 

algebra is called commutative duplication of algebras. We 

will discuss this process from a mathematical perspective 

later. 

Now that we've seen how the gametic and zygotic algebras 

are formed in the most basic example, we shall begin to 

consider the mathematical (and indeed, algebraic) structure 

of such algebras. 

IV. THE NON-ASSOCIATIVITY OF 

INHERITANCE 

Depending on the “population” you are concerned with, a 

general element  of the gametic algebra which 

satisfies   with 0 , 1    and 1    can 

represent a population, a single individual of a population, 

or a single gamete. In each case, the coefficients  and 

 signify the percentage of frequency of the associated 

allele. i.e., if the element represents a population, then   is 

the percentage of the population which carries the allele A  

on the gene under consideration.  Likewise, is the 

percentage of the population which has the allele a . 

For those elements of the gametic and zygotic algebras 

which represent populations, multiplication of two such 

elements represents random mating between the two 

populations. It seems logical that the order in which 

populations mate is significant. i.e., if population P  mates 

with population Q  and then the resulting population mates 

with R , the resulting population is not the same as the 

population resulting from P  mating with the population 

obtained from mating Q  and R  originally. Symbolically, 

 P Q R   is not equal to  P Q R  . So, we see that from a 

purely biological perspective, we should expect that the 
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algebras which arise in genetics will not satisfy the 

associative property. 

Now, if we study the multiplication tables of both the 

gametic and zygotic algebras for simple Mendelian 

inheritance, we will notice immediately that the algebras are 

commutative. From a biological perspective, if populations 

P  and Q  are mating, it makes no difference whether you 

say P  mates with Q  or Q  mates with P . How-ever, as we 

should expect, these algebras do not satisfy the associative 

property. E.g., in the gametic algebra apply the rules of 

multiplication and the distributive property to see that 

  3 1
2 4

A A a A a    However,   1 1
2 4

A A a A a A a      .  

Hence, the associative property does not hold for the 

gametic algebra. The same is true for the zygotic algebra. In 

general, the algebras which arise in genetics are 

commutative but non-associative. 

V. GAMETIC AND ZYGOTIC ALGEBRAS 

In many genetic situations, Mendelian inheritance does not 

hold. E.g., gene mutation or recombination both result in 

different inheritance rules. The gametic and zygotic 

algebras we discussed in the previous section corresponded 

to the very specific example of simple Mendelian 

inheritance for a single gene with two alleles. The more 

general definitions for gametic and zygotic algebras are 

given. Suppose now we have a random mating population 

with n distinct gametes. Call them 
1, , na a .   These 

gametes could differ at one or more genetic loci. Then 

consider these n gametes as basic elements of an n-

dimensional real vector space. Multiplication is defined by 

1

n

i j ijk k

k

a a a



 

Such that 

1. 0 1   , , 1, ,ijk i j k n     

2. 

1

1
n

ijk k

k

a


  

3. 
ijk jik   

The resulting algebra G is called an n-dimensional gametic 

algebra. 

For the zygotic algebra we consider pairs of the n gametes, 

ij i ja a a  with the understanding that 
ij jia a , so without 

loss we only consider 
ija  with i j . Then random mating 

of zygotes 
ija  and 

pqa  will yield zygotes 
ksa  with a certain 

probability; call it γij;pq;ks. This de nes zygotic 

multiplication,  

, ,

n

ij pq ij pq ks ks

k s

a a a



 

such that 

1. 
, ,0 1ij pq ks   

2. 
, ,

, 1

1
n

ij pq ks

k s





 

3. 
, , , ,ij pq ks pq ij ks   

where in each case ,  and i j p q k s   . The resulting 

algebra   is the zygotic algebra. We note that the zygotic 

algebra can be constructed from the gametic algebra 

through a process called commutative duplication, which 

was originally introduced by Etherington in the general 

setting of a (not necessarily commutative nor associative) 

linear algebra. Using this process, one can calculate the 

zygotic multiplication constants from the gametic 

multiplication constants in the following way: 

 

, ,

,  for k<s

                 fork=s

ijk pqs ijs pqk

ij pq ks

ijk pqs

   


 


 


 

In modern terms, commutative duplication can be realized 

using tensor products. For any commutative algebra A, 

tensor it with itself (in the sense of vector spaces) to form 

A A . Then, commutative duplication can be achieved via 

the quotient  A A I , where I is the subspace generated 

by elements of the form x y y x   . This quotient space 

is, in fact, a commutative algebra, where multiplication is 

defined by     , , ,a b c d ab cd . Gonshor [1960] first 

gave this as a basis-free definition of commutative 

duplication of an algebra. 

In addition, beginning with a zygotic algebra  , 

commutative duplication produces another algebra C with 

genetic relevance, which is generally referred to as the 

copular algebra. The genetic significance of this algebra is 

that its elements, which are unordered pairs of zygotes, 

represent the mating types of a population. 

VI. ALGEBRA WITH GENETIC RELATION 

Mathematically, the algebras that arise in genetics (via 

gametic, zygotic, or copular algebras) are very interesting 

structures. They are generally commutative but non-

associative, yet they are not necessarily Lie, Jordan, or 

alternative algebras. In addition, many of the algebraic 

properties of these structures have genetic significance. 

Indeed, it is the interplay between the purely mathematical 

structure and the corresponding genetic properties that 

makes this subject so fascinating. The work is turned now 

from the motivating genetics to the more formal 

mathematical study of the underlying algebraic structure. 

The most general definition of an algebra which could have 

genetic significance is that of an algebra with genetic 

realization. An algebra with genetic realization is an algebra 

A over the real numbers  which has a basis 
1, , na a  and a 

multiplication table 

 

1

n

i j ijk k

k

a a a



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 such that 
, ,0 1ij pq ks  for all i,j,k and  

    

1

1
n

ijk

k





 

for i; j = 1,. . ., n. Such a basis is called the natural basis for 

A. 

It is easy to see that our earlier examples of gametic and 

zygotic algebras for simple Mendelian inheritance, as well 

as the general gametic and zygotic algebras, are all algebras 

with genetic realization. In a general algebra A with genetic 

realization, an element x in A represents a population, or a 

gene pool for a population, if its expression as a linear 

combination of the basic elements 
1, , na a , 

 
1 1 2 2 n nx a a a       

satisfies 0 1i  for all 1,2, ,i n  and 

1

1
n

i

k




 .  Then 

i is percentage   of the population x which carries the 

allele
ia  

The class of all algebras with genetic realization is too large 

to say much about. However, since all gametic algebras 

(and their commutative duplicates) satisfy the definition, it 

provides a solid framework for what constitutes an algebra 

with genetic significance. 

VII. BARIC ALGEBRAS 

For strictly mathematical purposes, it is unnecessary to 

restrict the  field our algebras are defined over to be the real 

numbers. Hence, we will work over an arbitrary field k 

when appropriate. As we have seen, algebras with genetic 

realization are not necessarily associative algebras. 

However, they do belong to a rather special class of non-

associative algebras. A general non-associative algebra 

need not possess a matrix representation. Yet, algebras with 

genetic realization do. In fact, they possess the simplest 

possible matrix representation {a scalar representation. 

An algebra A over a  field k is called a baric algebra if it 

admits a non-trivial algebra homomorphism :w A k . In 

other words, a baric algebra is an algebra with a one-

dimensional representation. The homomorphism w  is 

called the weight function (or baric function). 

Proposition Let A be an n-dimensional algebra with genetic 

realization over . Then A is a baric algebra. 

Proof. Let 1, , na a denote a natural basis for A. Define 

 by   1iw a  for 1,2, ,i n  and then extend 

linearly onto A. i.e., 

1

n

i i

i

x a



then    

1

n

i i

k

w x w a


 .  

Hence 
 

1

n

i

k

w x 



.  Then we need only show that w  is a 

hommorphism. 

 

Let 

1

n

i i

i

x a



and

1

n

j j

j

y a



.   

Then  

 

1 1

1 1

1 1 1

1 1 1

    =

    =

   =

n n

i i j j

i j

n n

i j i j

i j

n n n

i j ijk k

i j k

n n n

i j ijk k

i j k

xy a a

a a

a

a

 

 

  

  

 

 

  

  



 
 
 

  
  

  

 

 

  



 

 

T Then apply w to get that 

 

 
1 1 1

1 1 1

1 1

           =

            =

n n n

i j ijk

k i j

n n n

i j ijk

i j k

n n

i j

i j

w xy   

  

 

  

  

 

  
   

  

  
  

  

  
   

  

  

  

 

 

 

since

1

1
n

i

k





.  But, then      w xy w x w y .  Therefore, 

w is a homomorphism and  is a baric algebra. 

From a strictly mathematical perspective, an interesting 

question to ask about baric algebras is whether or not their 

weight functions are uniquely determined. The following 

example shows that in general, they are not. 

Example. Let  be a commutative 3-

dimensional algebra with the multiplication table below. 

 

 

1a  2a  3a  

1a  1 2a a  2a  2a  

2a  2a  2a  2a  

3a  2a  2a  2 3a a  

 

Then define  via  1 1 1a  and 

   1 2 1 3 0a a   . And define 
 
via  2 3 1a  , 

while    2 1 2 2 0a a   . It is easy to see that
1 2  , 

and it is a simple verification that they both define 

homomorphisms. 

Even though the above example shows that not all baric 

algebras have a unique weight function, many of them do. 

In order to exhibit at least a sufficient condition for a baric 

algebra to have a unique weight function, the issue of 

powers in a non-associative algebra are to be discussed. 
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