

2(1) - Prime Partial Ideals Of Partial Γ- Semirings

¹Dr. M. Siva Mala, ²Dr. P. V. Srinivasa Rao

¹Assistant Professor, Department of Mathematics, V.R. Siddhartha Engineering College, Kanuru,

Vijayawada, Krishna (District), Andhra Pradesh, INDIA. sivamala_aug9@yahoo.co.in

²Associate Professor, Basic Engineering Department, DVR & Dr. HS MIC College of Technology,

Kanchikacherla, Krishna (District), Andhra Pradesh, INDIA. srinu_fu2004@yahoo.co.in

Abstract: A partial Γ -semiring is a structure possessing an infinitary partial addition and a ternary multiplication, satisfying a set of identities. The partial functions under disjoint-domain sums and functional composition is a partial Γ -semiring. In this paper we introduce the notions of 2(1)-prime partial ideal and m2(m1)-system and obtained some relations between them in partial Γ -semirings.

Keywords: prime ideal, m-system, 2(1)-prime partial ideal, m2(m1)-system of (R, Γ) , 2(1)-spec(R) & 2(1)-prime radical of K.

I. INTRODUCTION

Arbib, Manes, Benson[3], [5] and Streenstrup[14] introduced the notions of sum ordered partial monoids & sum ordered partial semirings. M. Murali Krishna Rao[6] in 1995 introduced the notion of a Γ -semiring as a generalization of semirings and Γ -rings.

In [8] and [9] we introduced the notions of partial Γ semiring and Γ -so-ring as a generalization of partial semirings and Γ -semirings. In [10], [11], [12] and [13] we studied the ideal theory for Γ -so-rings.

In this paper we introduce the notions of 2(1)-prime partial ideal and $m_2(m_1)$ -system in a partial Γ -semiring and obtain the characterizations of intersection of all 2(1)-prime partial ideals of R and 2(1)-prime radical of K.

II. PRELIMINARIES

In this section we collect some important definitions and results for our use in this paper.

1.1. Definition. [5] A *partial monoid* is a pair (M, Σ) where M is a nonempty set and Σ is a partial addition defined on some, but not necessarily all families $(x_i : i \in I)$ in M subject to the following axioms:

(i) **Unary Sum Axiom.** If $(x_i : i \in I)$ is a one element family in *M* and $I = \{j \}$, then $\Sigma(x_i : i \in I)$ is defined and equals x_j . (ii) **Partition-Associativity Axiom.** If $(x_i : i \in I)$ is a family in *M* and $(I_j : j \in J)$ is a partition of *I*, then $(x_i : i \in I)$ is summable if and only if $(x_i : i \in I_j)$ is summable for every *j* in *J*, $(\Sigma(x_i : i \in I_j) : j \in J)$ is summable, and $\Sigma(x_i : i \in I) = \Sigma(\Sigma(x_i : i \in I_j): j \in J)$.

1.2. Definition. [8] Let (R, Σ) and (Γ, Σ') be two partial monoids. Then *R* is said to be a *partial* Γ -semiring if there exists a mapping $R \times \Gamma \times R \to R$ (images to be denoted by *xyy* for *x*, *y* \in *R* and $\gamma \in \Gamma$) satisfying the following axioms:

(i) $x\gamma(y\mu z) = (x\gamma y)\mu z$,

(ii) a family $(x_i : i \in I)$ is summable in *R* implies $(x\gamma x_i : i \in I)$ is summable in *R* and $x\gamma[\Sigma(x_i : i \in I)] = \Sigma(x\gamma x_i : i \in I)$, (iii) a family $(x_i : i \in I)$ is summable in *R* implies $(x_i\gamma x : i \in I)$, (iv) a family $(\gamma_i : i \in I)$ is summable in Γ implies $(x\gamma_i y : i \in I)$, (iv) a family $(\gamma_i : i \in I)$ is summable in Γ implies $(x\gamma_i y : i \in I)$, is summable in *R* and $x[\Sigma'(\gamma_i : i \in I)]y = \Sigma(x\gamma_i y : i \in I)$ for all $x, y, z, (x_i : i \in I)$ in *R* and $\gamma, \mu, (\gamma_i : i \in I)$ in Γ .

1.3. Definition. [10] Let *R* be a partial Γ -semiring, *A* be a nonempty subset of *R* and Ω be a nonempty subset of Γ . Then the pair (A, Ω) of (R, Γ) is said to be a *left (right) partial* Γ -*ideal* of *R* if it satisfies the following:

(i) $(x_i : i \in I)$ is a summable family in R and $x_i \in A \ \forall i \in I$ implies $\sum_i x_i \in A$,

(ii) $(\alpha_i : i \in I)$ is a summable family in Γ and $\alpha_i \in \Omega \ \forall i \in I$ implies $\Sigma'_i \alpha_i \in \Omega$, and

(iii) for all $x \in R$; $y \in A$ and $\alpha \in \Omega$, $x\alpha y \in A$ ($y\alpha x \in A$).

If (A, Ω) is both left and right partial Γ -ideal of a partial Γ semiring R, then (A, Ω) is called a *partial* Γ -ideal of R. If Ω $\Gamma = \Gamma$, then A is called a *partial ideal* of (R, Γ) .

1.4. Definition. [9] A Γ -so-ring R is said to be a *complete* partial Γ -semiring if every family of elements in R is summable and every family of elements in Γ is summable.

1.5. Theorem. [10] Let *R* be a complete partial Γ -semiring. If *A* and Ω are subsets of *R* and Γ respectively, then the partial Γ -ideal generated by (A, Ω) is the pair $(\{x \in R \mid x = \sum_i x_i + \sum_j r_j \alpha_j x_j' + \sum_k x_k'' \alpha_k' r_k' + \sum_l r_l'' \alpha_l'' x_l''' \alpha_l''' r_l''', where <math>x_i$, $x_j', x_k'', x_l''' \in A, r_j, r_k', r_l'', r_l''' \in R$ and $\alpha_j, \alpha_k', \alpha_l'', \alpha_l''' \in \Gamma$ $\}, \{\beta \in \Gamma \mid \beta = \Sigma_i' \beta_i, \beta_i \in \Gamma\}).$

1.6. Remark. [10] Let *R* be a complete partial Γ -semiring and $a \in R$. Then the left/right/both sided ideals of *R* generated by *a* are

(i) $\langle a \rangle = \{ x \in R \mid x \equiv \Sigma_n a + \Sigma_j r_j \alpha_j a, r_j \in R, \alpha_j \in \Gamma, n \in N \},$

(ii) $[a > = \{ x \in R \mid x = \Sigma_n a + \Sigma_k a \alpha_k r_k', r_k' \in R, \alpha_k' \in \Gamma, n \in N \},$

(iii) $\langle a \rangle = \{ x \in R \mid x = \Sigma_n a + \Sigma_j r_j a_j a + \Sigma_k a a_k' r_k' + \Sigma_l r_l'' a_l'' a a_l''' r_l''', r_j, r_k', r_l'', r_l''' \in R \text{ and } a_j, a_k', a_l'', a_l''' \in \Gamma, n \in N \}.$

We call $\langle a \rangle$ as the *principal ideal generated by a*.

1.7. Definition. [10] Let *R* be a partial Γ -semiring. If *A*, *B* are subsets of *R* and Γ_I is a subset of Γ , define $A\Gamma_I B$ as the set $\{x \in R \mid \exists a_i \in A, \gamma_i \in \Gamma_I, b_i \in B, \Sigma_i a_i \gamma_i b_i \text{ exists and } x = \Sigma_i a_i \gamma_i b_i \}$.

If $A = \{a\}$ then we also denote $A \Gamma_I B$ by $a \Gamma_I B$. If $B = \{b\}$ then we also denote $A \Gamma_I B$ by $A \Gamma_I b$. Similarly if $A = \{a\}$ and $B = \{b\}$, we denote $A \Gamma_I B$ by $a \Gamma_I b$ and thus $a \Gamma_I b = \{x \in R \mid x = a\gamma b \text{ for some } \gamma \in \Gamma_I \}$.

An ideal A of a Γ -so-ring R is called proper if $A \neq R$.

1.8. Definition. [12] A proper partial ideal *P* of a partial Γ -semiring *R* is said to be *prime* if and only if for any partial ideals *A*, *B* of *R*, $A\Gamma B \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$.

2. 2(1)-PRIME PARTIAL IDEALS 🚽

We introduce the notion of 2(1)-prime partial ideals in partial Γ -semirings as follows:

2.1. Definition. Let R be a partial Γ - semiring and A be a proper partial ideal of (R, Γ) . Then A is said to be 2-*prime* if and only if for any subtractive partial ideals I, J of (R, Γ) , $I\Gamma J \subseteq A$ implies $I \subseteq A$ or $J \subseteq A$.

2.2. Definition. Let R be a partial Γ - semiring and A be a proper partial ideal of (R, Γ) . Then A is said to be 2-*prime* if and only if for any subtractive partial ideal I and a partial ideal J of (R, Γ) , $\Pi \Gamma J \subseteq A$ implies $I \subseteq A$ or $J \subseteq A$.

2.3. Remark. Let R be a partial Γ - semiring and A be a proper partial ideal of (R, Γ) . If A is a prime ideal of (R, Γ) then A is a 2(1)-prime partial ideal of (R, Γ) .

Proof. Suppose A is a prime partial ideal of (R, Γ) . Let I, J) Eng be any two subtractive partial ideals of (R, Γ) such that $I\Gamma J \subseteq A$. Then I, J are partial ideals of (R, Γ) such that $I\Gamma J \subseteq A$. Since A is prime, $I \subseteq A$ or $J \subseteq A$. Hence A is a 2(1)-prime partial ideal of (R, Γ) .

The following example illustrates that in a partial Γ -semiring R, a 2(1)-prime partial ideal of (R,Γ) is not prime.

2.4. Example. Let $R = \{0, 1, 2, 3\}$. Define Σ on R as

$$\sum_{i \in I} x_i = \begin{cases} x_j, & \text{if } x_i = 0 & \forall i \neq j \text{ for some } j \\ 2, & \text{if } x_j = x_k = 1 & \text{for some } j, k \text{ and } x_i = 0 & \forall i \neq j, k \\ 3, & \text{if } J = \{i \mid x_i \neq 0\} \text{ is finite and } \Sigma(x_i : i \in J) \ge 3 \\ \text{undefined, otherwise} \end{cases}$$

Then (R, Σ) is a partial monoid. Let $\Gamma := \mathbb{N} \bigcup \{0\}$, the set of all non-negative integers. Then Γ is a partial monoid with finite support addition. Define a mapping $R \times \Gamma \times R$ into R as

$$(x, \alpha, y) = \begin{cases} 0 & if & any & one & of & x, \alpha, y & is & 0, \\ x & if & \alpha = y = 1, \\ \alpha & if & x = y = 1, \\ y & if & x = \alpha = 1, \\ 3 & if & x.\alpha. y \ge 3 \end{cases}$$

Then R is a partial Γ -semiring. The partial ideals of (R,Γ) are $\{0\}$, $\{0, 3\}$, $\{0, 2, 3\}$, R and the subtractive partial ideals of (R,Γ) are $\{0\}$ and R. Since $\{0,2,3\}$, Γ . $\{0,2,3\} = \{0,3\} = A$ and $\{0,2,3\} \not\subset I$, I is not a prime partial ideal of (R,Γ) . But it easy to prove that I is a 2(1)-prime partial ideal of (R,Γ) .

2.5. Lemma. Let R be a complete partial Γ -semiring and A be a partial ideal of (R, Γ) . Then the subtractive closure of A is $\overline{A} = \{a \in R \mid a + x \in A, \text{ for some } x \in A\}.$

Proof. Take $S := \{a \in R \mid a + x \in A, \text{ for some } x \in A\}$. First we prove that S is the subtractive partial ideal of (R,Γ) containing A: Let $(a_i : i \in I)$ be a (summable) family in R such that $a_i \in S \quad \forall i \in I$. Then \forall $i \in I, a_i + x_i \in A$ for some $x_i \in A$. Now $\sum_{i} a_i + \sum_{i} x_i = \sum_{i} (a_i + x_i) \in A$ and hence $\sum_{i} a_i \in S$. Let $r \in R, \alpha \in \Gamma, a \in S$. Then $r \in R, \alpha \in \Gamma$ and $a + x \in A$ $x \in A$. for some Now $r\alpha(a+x) = r\alpha a + r\alpha x \in A$ and $(a+x)\alpha r = a\alpha r + x\alpha r \in A$ and hence $r\alpha a, a\alpha r \in S$. Thus S is a partial ideal of (R,Γ) . Let $a,b \in R$ be such that $a+b \in S$ and $b \in S$. Then $a+b+x \in A$ and $b + y \in A$ for some $x, y \in A \implies a + b + x + y \in A$ for some $b+x+y \in A$ and hence $a \in S$. Thus S is a subtractive partial ideal of (R,Γ) . Since $a+0=a \in A, A \subseteq S$. Now we prove that S is the smallest subtractive partial ideal of (R, Γ) containing A: Let P be another subtractive partial ideal of (R,Γ) containing A. Let $a \in S$. Then $a + x \in A$ for some

 $x \in A$. Since $A \subseteq P, a + x \in P$ and $x \in P$. Since P is subtractive, $a \in P$ and hence $S \subseteq P$. Hence the lemma.

2.6. Theorem. Let A be a partial ideal of a partial Γ -semiring R. Then A is 2(1)-prime partial ideal if and only if $x, y \in R$ such that $\overline{\langle x \rangle} \Gamma \overline{\langle y \rangle} \subseteq A(\overline{\langle x \rangle} \Gamma \langle y \rangle \subseteq A)$ then $x \in A$ or $y \in A$.

Proof. Suppose A is a 2(1)-prime partial ideal of (R, Γ) . Let $x, y \in R$ such that $\overline{\langle x \rangle} \Gamma \overline{\langle y \rangle} \subseteq A$. Since $\overline{\langle x \rangle}, \overline{\langle y \rangle}$ are subtractive partial ideals of (R, Γ) such that $\overline{\langle x \rangle} \Gamma \overline{\langle y \rangle} \subseteq A$ and A is 2(1)-prime, $\overline{\langle x \rangle} \subseteq A$ or $\overline{\langle y \rangle} \subseteq A$. Hence $x \in A$ or $y \in A$.

Conversely, suppose that $x, y \in R$ such that $\langle x \rangle \Gamma \langle y \rangle \subseteq A$ then $x \in A$ or $y \in A$. Let X, Y be any two subtractive partial ideals of (R, Γ) such that $X\Gamma Y \subseteq A$. Suppose $X \not\subset A$. Then $\exists x \in X \ni x \notin A$. Let $y \in Y$. Now we prove that $\langle x \rangle \Gamma \langle y \rangle \subset X \Gamma Y$: Let $a \in \overline{\langle x \rangle} \overline{\langle y \rangle}$. Then $a = \sum_i x_i \alpha_i y_i$ for some $x_i \in \overline{\langle x \rangle}, \alpha_i \in \Gamma, y_i \in \overline{\langle y \rangle}, \forall i \in I.$ Since $x_i \in \overline{\langle x \rangle}, x_i + x'_i \in \langle x \rangle \subset X_{-}$ for some $x'_i \in \langle x \rangle \subseteq X \quad \forall i \in I.$ Since X is subtractive, $x_i \in X$ $\forall i \in I$. Similarly we prove that $y_i \in Y \quad \forall i \in I$. Thus $a = \sum_{i} x_i \alpha_i y_i \in X \Gamma Y.$ Hence $\overline{\langle x \rangle} \overline{\Gamma \langle y \rangle} \subset X\Gamma Y. \Rightarrow \overline{\langle x \rangle} \overline{\Gamma \langle y \rangle} \subset A.$ By assumption, $x \in X$ or $y \in Y$. Since $x \notin X, y \in Y$ and hence $Y \subset A$. Hence the theorem.

2.7. Definition. If X, Y are non-empty subsets of a partial Γ -semiring R, then

(i) $(X:Y)_l = \{a \in R \mid a \Gamma Y \subseteq X\}$

(ii) $(X:Y)_r = \{a \in R \mid Y \Gamma a \subseteq X\}$

(iii) $(X : Y) = \{a \in R \mid a \Gamma Y \subseteq A \text{ and } Y \Gamma a \subseteq X\}.$

2.8. Lemma. Let R be a partial Γ -semiring. Then

(i) If X and Y are left(right) partial ideals of (R,Γ) then $(X:Y)_l((X:Y)_r)$ is a partial ideal of (R,Γ) .

(ii) If X is a subtractive left(right) partial ideal and Y is a left(right) partial ideal of (R,Γ) then $(X:Y)_l((X:Y)_r)$ is a subtractive partial ideal of (R,Γ) .

Proof. (i): we have $(X : Y)_l = \{a \in R \mid a \Gamma Y \subseteq X\}$. Let $(a_i : i \in I)$ be a summable family in R and $a_i \in (X : Y)_I$ $\forall i \in I.$ $x_{i}\Gamma B \subset A$ $\forall i \in I.$ Then \Rightarrow $\sum a_i \Gamma Y \subseteq X. \Rightarrow (\sum_{i \in I} a_i) \Gamma Y \subseteq X. \Rightarrow \sum_{i \in I} x_i \in (X:Y)_I.$ Let $r \in R, \alpha \in \Gamma, a \in (X : Y)_i$. Then $r \in R, \alpha \in \Gamma$ and $a\Gamma Y \subseteq X$. Consider $(r\alpha a)\Gamma Y = r\alpha(a\Gamma Y)$. Since $a\Gamma Y \subseteq X, r\alpha(a\Gamma Y) \subseteq r\alpha X$. Since X is a left partial ideal. $r\alpha X \subset X \Rightarrow (r\alpha a) \Gamma Y \subset X \Rightarrow r\alpha a \in (X : Y)_{I}.$ Consider $(a\alpha r)\Gamma Y = a\alpha(r\Gamma Y)$. Since Y is a left partial ideal of $(R,\Gamma), r\Gamma Y \subset Y. \Rightarrow a\alpha(r\Gamma Y) \subset a\alpha Y \subset a\Gamma Y \subset X.$ \Rightarrow $(a\alpha r)\Gamma Y \subseteq X$. $\Rightarrow a\alpha r \in (X : Y)_{I}$. Therefore $(X : Y)_{l}$ is a subtractive partial ideal of (R, Γ) . (ii): Suppose X is a subtractive left partial ideal and Y is a ideal left partial of (R,Γ) . Let $a, a + b \in (X : Y)_1 \Rightarrow a \Gamma Y \subseteq X$ and $(a+b)\Gamma Y \subseteq X$. Let $c \in b\Gamma Y$. Then $c = \sum_i b\alpha_i y_i$ for some $\alpha_i \in \Gamma$, $y_i \in Y$. Now $a\alpha_i y_i \in a\Gamma Y \quad \forall i \in I$. $\Rightarrow x\alpha_i b_i \in A$ $\forall i \in A \Rightarrow \sum_i a\alpha_i y_i \in X.$ Now

 $\sum_{i} a\alpha_{i} y_{i} + \sum_{i} b\alpha_{i} y_{i} = \sum_{i} (a+b)\alpha_{i} y_{i} \in (a+b)\Gamma Y \subset X.$

and

 $(R,\Gamma).$

Since X is subtractive, $\sum_i a\alpha_i y_i \in X$

partial

subtractive

2(1)-prime.

 $\sum_{i} a\alpha_{i} y_{i} + c \in X$, we have $c \in X$. Therefore

 $b\Gamma Y \subseteq X. \Rightarrow b \in (X:Y)_l$. Hence $(X:Y)_l$ is a

2.9. Theorem. Let A be a subtractive partial ideal of a partial Γ -semiring R. Then A is prime if and only if A is

ideal

of

Proof. By Remark 2.3., if A is prime then A is 2(1)-prime.

Conversely, suppose that A is 2(1)-prime partial ideal of (R,Γ) . Let X, Y be any two partial ideals of (R,Γ) $\ni X \Gamma Y \subseteq A$. Then $X \subseteq (A : Y)_I$. Since A is subtractive, by lemma 2.8.(ii), $(A:Y)_{I}$ is a subtractive partial ideal containing X. $\Rightarrow \overline{X} \subseteq (A:Y)_{I} \Rightarrow \overline{X} \Gamma Y \subseteq A \Rightarrow Y \subseteq (A:\overline{X})_{I}.$ Since A is subtractive, by lemma 2.8.(ii), $(A:\overline{X})_r$ is a subtractive partial ideal containing Y. $\Rightarrow \overline{Y} \subseteq (A:\overline{X})_r \Rightarrow \overline{X}\Gamma Y \subseteq A$. Since A is 2-prime and $\overline{X}, \overline{Y}$ are subtractive partial ideals $\overline{X} \subset A$ or $\overline{Y} \subset A$. Thus $X \subset A$ or $Y \subset A$. Hence A is a prime partial ideal of (R, Γ) .

3. $m_2(m_1)$ – SYSTEM OF (R, Γ) .

We define $m_2(m_1)$ -system in a partial Γ -semiring as follows:

3.1. Definition. Let R be a partial Γ -semiring and A be a subset of R. Then A is called an $m_2(m_1)$ -system of (R,Γ)

if for any $a, b \in A, \exists$ $a_1 \in \langle a \rangle, b_1 \in \langle b \rangle$ $(b_1 \in \langle b \rangle), r \in R, \alpha, \beta \in \Gamma$ such that $a_1 \alpha r \beta b_1 \in A$. **3.2. Remark.** Let R be a partial Γ -semiring. Then every msystem of (R, Γ) is an $m_2(m_1)$ -system of (R, Γ) .

Proof. Let A be an m-system of (R, Γ) . Let $a, b \in A$. Then \exists

$$\alpha, \beta \in \Gamma, r \in R \ni a \alpha r \beta b \in A. \Longrightarrow$$

 $a_1 = a \in \overline{\langle a \rangle}, b_1 = b \in \overline{\langle b \rangle} \ni a_1 \alpha r \beta b_1 \in A$. Hence A is an $m_2(m_1)$ -system of (R, Γ) .

The following example illustrates that an $m_2(m_1)$ -system is not m-system in a partial Γ -semiring R.

3.3. Example. Consider the partial Γ -semiring R as in the example 2.4. Then a subset $A = \{1,2\}$ of R is an $m_2(m_1)$ -system. For $2 \in A$, for any $r \in R$ and $\alpha, \beta \in \Gamma$, $2\alpha r\beta 2 = 3 \notin A$. Hence $A = \{1,2\}$ is not an m-system of (R,Γ) .

3.4. Lemma. Let R be a partial Γ -semiring with left/right unity and P be a proper partial ideal of (R, Γ) . Then P is 2(1)-prime partial ideal of (R, Γ) if and only if $R \setminus P$ is an $m_2(m_1)$ -system of R.

Proof. Suppose P is a 2-prime partial ideal of (R, Γ) . Let $a, b \in R \setminus P$. Then $a,b \notin P$. theorem By 2.6.. $\overline{\langle a \rangle} \overline{\Gamma \langle b \rangle} \not\subset P. \Rightarrow \exists$ $x \in \overline{\langle a \rangle} \overline{\langle b \rangle} \Rightarrow x \notin P \Rightarrow x = \sum_i a_i \alpha_i b_i$ for some $a_i \in \langle a \rangle, \alpha_i \in \Gamma, b_i \in \langle b \rangle.$ Since $x \notin P, \sum_{i} a_{i} \alpha_{i} b_{i} \notin P. \Longrightarrow \exists$ $a'_i \in \overline{\langle a \rangle}, \alpha'_i \in \Gamma, b'_i \in \overline{\langle b \rangle} \ni a'_i \alpha'_i b'_i \notin P. \Longrightarrow a'_i \alpha'_i b'_i \notin P.$ Since R has left unity, \exists a family of elements $(e_i : j \in J)$ R, $(\gamma_i : j \in J)$ of Γ such of $\sum_{i} e_{i} \gamma_{i} b'_{i} = b'_{i} \Rightarrow a'_{i} \alpha'_{i} (\sum_{i} e_{i} \gamma_{i} b'_{i}) \notin P. \Longrightarrow$ $\sum_{i} a'_{i} \alpha'_{i} e_{i} \gamma_{i} b'_{i} \notin P.$ ⇒∃

 $a'_i \in \overline{\langle a \rangle}, b'_i \in \overline{\langle b \rangle}, \alpha'_i, \gamma_j \in \Gamma, e_j \in R \ni a'_i \alpha'_i e_j \gamma_j b'_i \in R \setminus P_{\text{either}}$ Hence $R \setminus P$ is an m_2 -system of R.

Conversely suppose that $R \setminus P$ is an m_2 -system of R. Let $a, b \in R \ni \overline{\langle a \rangle} \Gamma \overline{\langle b \rangle} \subseteq P$. Suppose $a \notin P$ and $b \notin P$. Then $a, b \in R \setminus P$. $\Rightarrow \exists$ $a_1 \in \overline{\langle a \rangle}, b_1 \in \overline{\langle b \rangle}, \alpha, \beta \in \Gamma, r \in R \ni a_1 \alpha r \beta b_1 \in R \setminus P$. Since

$$a_1 \in \langle a \rangle, a_1 \alpha r \in \langle a \rangle.$$

 $\Rightarrow (a_1 \alpha r) \beta b_1 \in \overline{\langle a \rangle} \Gamma \overline{\langle b \rangle} \Rightarrow a_1 \alpha r \beta b_1 \notin P,$ a
contradiction. Hence $a \in P$ or $b \in P$. Therefore P is a 2-
prime partial ideal of (R, Γ) .

3.5. Theorem. Let R be a partial Γ -semiring with left/right unity, Q be a partial ideal of (R,Γ) , and M be an $m_2(m_1)$ -system of R $\ni \overline{Q} \cap M = \phi$. Then there exists a 2(1)-prime partial ideal A of (R,Γ) such that $Q \subseteq A$ and $\overline{A} \cap M = \phi$ and A is maximal with respect to this property.

Proof. Take $\tau = \{P \mid P \text{ is a partial ideal of } (R, \Gamma) \text{ such }$ that $Q \subseteq P$ and $\overline{P} \cap M = \phi$. Clearly $Q \in \tau$. Hence (τ, \subseteq) is a non-empty poset. Let $\{P_i \mid j \in J\}$ be a simply ordered family in τ . Take $P' \coloneqq \bigcup_{i \in J} P_i$. Then P' is clearly a partial ideal containing Q. Now we prove that $\overline{P'} \cap M = \phi$: Suppose that $x \in \overline{P'} \cap M$. Then $x \in \overline{P'}$ $\Rightarrow x + y \in P'$ for some $y \in P'$. and $x \in M$. $\Rightarrow x + y \in P_i$ and $y \in P_k$ for some $j, k \in J$. Since $\{P_i \mid j \in J\}$ is a simply ordered family, either $P_i \subseteq P_k$ or $P_k \subseteq P_j$. So, assume that $P_j \subseteq P_k$. $\Rightarrow x + y \in P_k$ and $y \in P_k$ for some $k \in J \Rightarrow x \in \overline{P_k}$ and thus $x \in \overline{P_k} \cap M = \phi$, a contradiction. Hence $\overline{P'} \cap M = \phi$. Therefore every simply ordered family in τ has an upper bound in τ . By Zorn's lemma, τ has a maximal element. Let it be A. Now let X, Y be subtractive partial ideals such that $X\Gamma Y \subset A$ $X \not\subset A \Rightarrow X \cap A \subseteq A$ and and $A\Gamma X \subset A \Longrightarrow X\Gamma A \subset A$ and $A\Gamma X \subseteq \overline{A} \Rightarrow A \subseteq (\overline{A} : X)_r$ and $A \subseteq (\overline{A} : X)_l$. Since \overline{A} is subtractive, $(\overline{A}:X)_r$ and $(\overline{A}:X)_l$ are subtractive partial ideals containing A. Since A is maximal, A = (A : X)or $(\overline{A}:X)_{\mu} \cap M = (\overline{A}:X)_{\mu} \cap M \neq \phi$ and either

$$A = (\overline{A} : X)_l \text{ or } (\overline{\overline{A} : X})_l \cap M = (\overline{A} : X)_l \cap M \neq \phi.$$

 $(\overline{A}:X)_{*} \cap M \neq \phi \Rightarrow \exists$ Suppose $x \in (\overline{A}: X)_r \cap M \Rightarrow x \in (\overline{A}: X)_r$ and $x \in M$. $\Rightarrow \overline{\langle x \rangle} \subset (\overline{A} : X)_{x}$. $\Rightarrow X\Gamma \overline{\langle x \rangle} \subset \overline{A}$. $X \cap M \neq \phi$. Case(i): If Then Ξ $a \in X \cap M \Rightarrow a, x \in M \& M \text{ is an } m_2 \text{-system.} \Rightarrow \exists$ $a_1 \in \overline{\langle a \rangle}, x_1 \in \overline{\langle x \rangle}, \alpha, \beta \in \Gamma, r \in R \ni a_1 \alpha r \beta x_1 \in M.$ Since $X\Gamma \overline{\langle x \rangle} \subset \overline{A}, (a_1 \alpha r) \beta x_1 \in \overline{A} \Rightarrow \overline{A} \cap M \neq \phi$, a contradiction. Hence $A = (\overline{A} : X)_r$ & $A = (\overline{A} : X)_l$. Case(ii): If $X \cap M = \phi$. Since $X\Gamma \overline{\langle x \rangle} \subset \overline{A}, X \subset (\overline{A} : \overline{\langle x \rangle})_{I}.$ Since $\langle x \rangle \cap M \neq \phi$, by case(i), $A = (\overline{A} : \overline{\langle x \rangle})_I \implies X \subset A$, a contradiction. Hence $A = (\overline{A} : X)_r$ & $A = (\overline{A} : X)_l$ Now $X\Gamma Y \subseteq A \subseteq \overline{A} \Rightarrow Y \subseteq (\overline{A} : X)_r = A.$ Hence the theorem.

3.6. Theorem. Let R be a partial Γ -semiring. Then every 2(1)-prime partial ideal I of (R, Γ) contains a minimal 2(1)-prime partial ideal of (R, Γ) .

Proof. Take $\tau = \{A \mid A \text{ is a } 2\text{-prime partial ideal of } \}$ $(R,\Gamma) \ni A \subseteq I$. Clearly $I \in \tau$. Hence (τ,\subseteq) is a nonempty poset. Let $\{B_i \mid j \in J\}$ be a descending chain of elements in τ . Take $B \coloneqq \bigcap B_j$. Then B is clearly a partial ideal of (R, Γ) which contains I. Now let $x, y \in R \ni \langle x \rangle \Gamma \langle y \rangle \subseteq B$ and $x \notin B$. Then $x \notin B_k$ for some $k \in J$. If $j \leq k$ is a Since $\langle x \rangle \Gamma \langle y \rangle \subseteq B_{\iota}$ and $x \notin B_{\iota}$, $y \in P_{\iota}$. Since $j \le k, P_k \subseteq P_j$ and hence $y \in B_j$ $\forall j \le k$. If $j \ge k$: Then $B_i \subseteq B_k$. Since $x \notin B_k$, $x \notin B_j$. Now Hence $y \in B_j$ for all $j \in J \Rightarrow y \in \bigcap_{i \in J} B_j = B$. Hence B is a 2-prime partial ideal of (R, Γ) which contains I. Thus B is a minimal of $\{B_j \mid j \in J\}$ in τ . By Zorn's lemma, τ has a minimal element.

The set of all 2(1)-prime partial ideals of (R, Γ) is denoted by 2(1)-spec(R).

3.7. Theorem. Let R be a partial Γ -semiring with left/right unity. Then $\bigcap 2(1) - spec(R) = \{x \in R \mid \text{ there is an } \}$

 $m_2(m_1)$ -system A of R with $x \in A$ implies $0 \in A$ }.

Proof. Take $T := \{x \in \mathbb{R} \mid \text{ there is an } m_2 \text{ -system A of } \mathbb{R}\}$ with $x \in A$ implies $0 \in A$. Let $x \notin \bigcap 2 - spec(R)$. Then $x \notin P$ for some 2-prime partial ideal P of (R, Γ) . Since P is a 2-prime partial ideal of (R,Γ) , $R \setminus P$ is an m_2 -system of (R, Γ) . Since $0 \in P, 0 \notin R \setminus P$. Thus \exists an m_2 -system $R \setminus P \quad \ni x \in R \setminus P$ and $0 \notin R \setminus P \implies x \notin T$. Therefore $T \subseteq \bigcap 2 - spec(R)$. Let $x \notin T$. Then \exists an m_2 -system A of R $\ni x \in A$ and $0 \notin A$. Now <0> is a partial ideal of $(R, \Gamma) \ni \langle 0 \rangle \cap A = \phi$. By theorem 3.5., there is a 2-prime partial ideal P $\ni < 0 > \subseteq P$ and $P \cap A = \phi$ and P is maximal with respect to this property. Since $x \in A, x \notin \overline{P}$. Since $P \subset \overline{P}, x \notin P$ for some 2prime partial ideal P of (R, Γ) . $\Rightarrow x \notin \bigcap 2 - spec(R)$. $\bigcap 2 - spec(R) \subset T.$ Therefore Hence $T = \bigcap 2 - spec(R)$..

3.8. Definition. Let K be a proper partial ideal of a partial Γ -semiring R with left/right unity. Then the 2(1)-prime radical of K is defined as the smallest 2(1)-prime partial ideals which contains K and is denoted by $2(1) - \sqrt{K}$. i.e., $2(1) - \sqrt{K} = \bigcap \{P \in 2(1) - spec(R) \mid \overline{K} \subseteq P\}.$

3.9. Theorem. If K is a proper partial ideal of a partial Γ semiring R then $2(1) - \sqrt{K} = \{x \in R \mid \text{there is an }$ $m_2(m_1)$ -system A of R with $x \in A$ implies $A \cap \overline{K} \neq \phi$. **Proof.** Take $T := \{x \in R \mid \text{there is an } m_2 \text{-system A of R} \}$ with $x \in A$ implies $A \cap \overline{K} \neq \phi$. Let $x \notin T$. Then \exists an m_2 -system A of R $\ni x \in A$ and $A \cap \overline{K} = \phi$. By theorem 3.5., \exists a 2-prime partial ideal P of R $\ni K \subset P$ and $A \cap \overline{P} = \phi$. Since $x \in A, x \notin \overline{P}$. $\Rightarrow x \notin 2 - \sqrt{K}$. Therefore $2 - \sqrt{K} \subset T$. Let $x \notin 2 - \sqrt{K}$. Then \exists a 2prime partial ideal P of R $\ni K \subseteq P$ and $x \notin P \Longrightarrow x \in R \setminus P$ and $(R \setminus P) \cap \overline{K} = \phi \Longrightarrow \exists$ an m_2 - $R \setminus P$ of $R \ni x \in R \setminus P$ system and $(R \setminus P) \cap \overline{K} = \phi \implies x \notin T$. Therefore $T \subseteq 2 - \sqrt{K}$. Hence the theorem.

IV. CONCLUSION

In this paper we introduced the notions of 2(1)-prime partial ideal and $m_2(m_1)$ -system in a partial Γ -semiring and proved that P is a 2(1)-prime partial ideal of R if and only if R\P is an $m_2(m_1)$ -system of (R, Γ). Also we obtained the

characterizations of intersection of all 2(1)-prime partial ideals of *R* and 2(1)-prime radical of *K*.

REFERENCES

[1] Acharyulu, G.V.S.: A Study of Sum-Ordered Partial Semirings, Doctoral thesis, Andhra University , 1992.

[2] Acharyulu, G.V.S.: *Matrix Representable So-rings*, Semigroup Forum, Vol. 46, 31-47, 1993.

[3] Arbib, M.A., Manes, E.G.: Partially Additive Categories and Flow-diagram Semantics, Journal of Algebra, Vol. 62, 203-227, 1980.

[4] Nanda Kumar, P.: 1-(2-) Prime Ideals in Semirings, Kyungpook Mathematical Journal, Vol. 50, 2010, 117-122.

[5] Manes, E.G., and Benson, D.B.: The Inverse Semigroup of a Sum-Ordered Partial Semiring, Semigroup Forum, Vol. 31, 129-152, 1985.

[6] Murali Krishna Rao, M.: Γ-semirings-I, Southeast Asian Bulletin of Mathematics, Vol. 19(1), 49-54, 1995.

[7] Murali Krishna Rao, M.: Γ-semirings-II, Southeast Asian Bulletin of Mathematics, Vol. 21, 281-287, 1997.

[8] Siva Mala, M., Siva Prasad, K.: Partial Γ-Semirings, Southeast Asian Bulletin of Mathematics, Vol. 38, 873-885, 2014. [9] Siva Mala, M., Siva Prasad, K.: (ϕ, ρ) -Representation of Γ -So-Rings, Iranian Journal of Mathematical Sciences and Informatics, Vol. 10(1), 103-119, 2015.

[10] Siva Mala, M., Siva Prasad, K.: Ideals of Sum-Ordered partial Γ -Semirings, Southeast Asian Bulletin of Mathematics, Vol. 40, 413-426, 2016.

[11] Siva Prasad, K., Siva Mala, M. & Srinivasa Rao, P.V.: Green's Relations in Partial Γ -Semirings, International Journal of Algebra and Statistics(IJAS), Vol. 2(2), 21-28, 2013.

[12] Siva Mala, M. & Siva Prasad, K.: Prime Ideals of Γ -So-rings, International Journal of Algebra and Statistics(IJAS), Vol. 3(1), 1-8, 2014.

[13] Siva Mala, M. & Siva Prasad, K.: Semiprime Ideals of Γ -So-rings, International Journal of Algebra and Statistics(IJAS), Vol. 3(1), 26-33, 2014.

[14] Streenstrup, M.E.: Sum-Ordered Partial Semirings, Doctoral thesis, Graduate school of the University of Massachusetts, Feb 1985.