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Abstract: In this paper we discussed some principle definitions on fractional order integration and differentiation. The 

proportional- integral derivative controllers (PID) are most widely used in the application of process control due to its 

simple structure and easy implementation. However Fractional order PID (FOPID) controllers are generalization of the 

Integer order (IO) PID controllers. Here we introduced the different types of the FOPID controllers and presented some 

of its applications and case studies and performed a comparative study of integer and fractional order PID controllers 

for best outcomes. 
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I. INTRODUCTION 

The concept of fractional calculus was introduced more 

than 300 years ago, but it was not applied in the control 

field until the 1960‟s.  The Proportional-Integral-Derivative 

(PID) controllers are still the most widely controller in 

engineering and industrial for process control applications. 

The reason behind the popularity of PID controllers 

increased due to of its simple structure and easily 

implementation.PID controllers are still by far the most 

popular feedback design in industry. Fractional calculus is a 

generalization of differentiation and integration to a non-

integer order   , being the fundamental operator    
 , 

where a and t are the limits of the operation.The fractional 

order Proportional-Integral-Derivative (FOPID) was first 

introduced by Podlubny [1] and it consider as the 

generalization case of classical PID controllers. The PID 

controllers performance further improved by the use of 

fractional order derivatives and fractional order integrals. 

II. BASIC CONCEPTS OF FRACTIONAL 

ORDER CALCULUS 

The following Figure.1 shows the concept of the fractional 

order differ-integrations on a number line. In integer order 

calculus, a function f can be differentiated or integrated 

successively an integer number of times.  

 

Figure.1: Number line and its interpolation for the concept of differ-

integrals of fractional calculus 

These are represented by the solid dotted points on the 

number line. However this notion of differentiation and 

integration can be extended to include any point on the 

number line which falls in-between the integer cases. This 

is thus a generalization of the integer order calculus and is 

termed as fractional order calculus. 

 

Many applications of fractional calculus can be obtained 

from the area of control systems. Fractional calculus 

derivatives and integrals are may any real number. The 

fundamental operator representing the non-integer order 

differentiation and integration is given by    
  , where 

    is the order of the differentiation or integration and 

„a‟ and „t‟ are the limits of the operation. It is defined as 
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The Grünwald–Letnikov (GL) and the Riemann Liouville 

(RL) definitions (Oldham 1974) are most commonly used 

definitions for the general fractional differentiation and 

integration: 

The Grünwald–Letnikov definition is given below: 
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While the RL definition is given by: 
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Where n is an integer and   is real a number.  (x) is the 

Gamma function. Also, there is one more definition of 

fractional differentiation and integration introduced by 

(Caputo 1967). 

Caputo‟s definition can be written as:  
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Fractional order differential equations are at least as stable 

as their integer order counterparts.  
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III. THE INTEGER AND FRACTIONAL 

ORDER PIDCONTROLLERS 

The transfer function of integer order PID controller as 

follows:  

      
       

Here, the order is unity for both integration and derivative. 

 
Fig. 2: Generic Closed Loop System 

The processes or real objects that we want to control are 

usually fractional. However, for many of them the 

fractionality is minimum. In general, the fractional Systems 

with integer-order approximation can cause significant 

differences between real system and mathematical model. 

The reason behind the use of integer-order models was the 

non existence of solution methods for fractional-order 

differential equations.PID controllers belong to dominating 

industrial controllers and therefore are objects of steady 

effort for improvements of their quality and robustness. The 

possibility of the use fractional-order controllers with non-

integer differentiation and integration improves PID 

controllers. A fractional PID controller therefore has the 

transfer function: 

   
  

  
    

  

The orders of differentiation and integration are 

respectively δ and λ(both may not be integers, but are 

positive real numbers).If we take both λ and δ unity; we 

will obtain PID controller with integer order. Here the PID 

controller with integer order has three parameters, while the 

PID controller of fractional order has five. The 

generalization of integer order PID controller are the 

fractional order PID controller and expands integer order 

PID controller to from point to plane. This expansion 

improves more flexibility to controller design and we can 

control more accurately our real world processes. We will 

design both integer and fractional order PID controllers 

using the particle swarm optimization (PSO)algorithm and 

display the advantages of the fractional order controllers 

provide us where the integer order controllers fails. 

 
Fig. 3: Expanding from Point to Plane 

1. STABILITY OF FRACTIONAL ORDER SYSTEMS 

During the control system design the stability of fractional 

order system is the very fundamental and critical 

requirement. The known fact is that the continuous time-

invariant time linear of an integer order system is stable, if 

and only if, characteristic polynomial has all of its roots are 

negative real parts. i.e, In the complex plane the roots must 

lie in the left half. The fractional order systems stability is 

the more complicated issue [5], [6]. 

For example, the stability of commensurate fractional order 

systems can by analysed via the theorem of Matington [6] 

or the definition from [5], which describes the way of 

mapping the poles from s
α
-plane into the w-plane. An 

interesting result is that in the complex plane the poles of 

the stable fractional order system can be mapped even in 

the right half . This is shown in Fig. 4 where the stability 

region depicted for a commensurate fractional order linear 

time-invariant system with order 0<α <1 is [4], [3]. 

 
Fig. 4: Region of stability for the commensurate fractional order 

system with0<α <1 

2. FRACTIONAL ORDER CONTROLLERS (FOC) 

The fractional order PID (FOPID) controller is the 

expansion of the conventional PID controller based on 

fractional calculus. From many years, in industries 

proportional - integral - derivative (PID) controllers have 

been very popular in applications of process control. Their 

excellence consists in simplicity of design and its best 

performance, such as low percentage of overreach and 

small settling time (In slow industrial processes which are 

essential). The importance of PID controllers, continuous 

efforts are being made to improve their robustness and 

quality. In the automatic control field, the fractional order 

controllers which are the generalization  integer order 

controllers would lead to robust control performances and 

more accurate. The important fact, that to attain the best 

performance in the fractional order models require the 

fractional order controllers,  most of the cases the fractional 

order controllers are applied to regular linear dynamics or 

nonlinear dynamics to improve the system control 

performances. Historically there are four major types of 

fractional order controllers: (Xue and Chen, 2002) 

 CRONE Controller 

 Tilted Proportional and Integral (TID) Controller 

 Fractional Order PI D Controller 

 Fractional Lead-Lag Compensator 
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CRONE Controller 

CRONE is a French acronym for fractional order robust 

control. By the use of these controllers it is possible to 

ensure almost constant closed loop characteristics, and 

ensure small variation of the closed loop system stability 

degree inspite of the plant perturbation and uncertainty in 

model parameters. It has a frequency domain design 

methodology employing fractional differentiation. It is 

possible to control minimum and non-minimum phase 

plants, unstable, time varying and non-linear plants with 

this controller. There are 3 generations of CRONE control 

successively extending the application fields. Some 

applications of these controllers have been in the domain of 

flexible transmission, car suspension control, hydraulic 

actuator (oustaloup et al. 2006.) 

Tilted Proportional and Integral (TID) Controller 

The purpose of TID is to provide an improved feedback 

loop compensator consisting the advantages of the 

conventional PID compensator, but provided that response 

which is closer to the theoretically optimal response. In 

TID proposal the proportional compensating unit is 

replaced with a compensator containing a transfer function 

characterized by 
 

  
   or s

-1/n
. This compensator is referred 

to as a “Tilt” compensator, as it provides a feedback gain as 

a function of frequency which is tilted or shaped with 

respect to positional compensation unit or the 

gain/frequency of a conventional. The entire compensator 

in this referred to as a Tilt-Integral-Derivative(TID)  

compensator. For the Tilt compensator, n is a real number 

not equal to zero, let it be in between 2 and 3. Thus, unlike 

the conventional PID controller, wherein exponent 

coefficients of the transfer functions of the compensator 

elements are either -1 or 0 or +1, TID proposal to exploits 

an exponent coefficient of    . Thereplacement of the 

conventional proportional compensator by the tilt 

compensator of the invention, an overall reaction obtained 

which is nearer to the theoretical optimal response 

determined by Bode. 

 
Fig. 5: Tilt-integral-derivative controller 

Fractional Order PI D Controller 

PI
λ   controller was studied both in frequency domain and 

in time domain. In generally, the transfer function of  PI
λ   

is given by 

C(s) = 
    

    
  = kp 

  

  
    

   

    

Where both λ and  are positive real numbers, kp is the 

proportional gain, „i‟ is the integration constant and „d‟ is 

the differentiation constant. Clearly, takingboth  λ and  as 

unity, we obtain a integer order PID controller. We obtain a 

P   controller,if we take λ = 0 (ki = 0) etc. These all types 

of controllers are PI
λ   controllers, particular cases .We 

can be expected that PI
λ   controller may increase the 

performance of control systems due to many tuning knobs 

introduced. Due to the fractional order in differentiator or 

integrator PI
λ  itself is an infinite dimensional linear filter. 

 
Fig.6. FO-PID (PIλDμ) controller (where, 0 ≤ λ ≤ 1 & 0 ≤ μ ≤ 1) 

Fractional Lead-Lag Compensator 

Lead compensators are mostly utilised to stabilize the 

marginally stable systems. Lag compensators are mostly 

utilised to reduce the magnitude of the system high 

frequency loop gain. The use of fractional order elements in 

this lag-lead compensator gives greater flexibility to the 

designer, to shape the loop frequency responses since the 

order of the filter can take any real value instead of only 

integer values the transfer function of a generic FO lead-lag 

compensator is given by (Monje et al. 2004)  

C(s) = Kc(
  

 

 

  
 

  

)

 

= Kcx
α(
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FOPID Controller Tuning: 

The five parameters of the FOPID controller, can be used to 

tune the controller, thus we can achieve a higher flexibility, 

than in the case of an integer order PID controller. For this 

reason we expect to attain with the FOPID controller better 

closed loop performances than that the ones obtained with 

the integer order PID controllers. Even thoughaeasy tuning 

rule, as in the case of PID controllers, does not exists. For 

tuning FOPID controllers Barbosa [7] proposed an 

experimental method. i.e determining the parameters by 

using Ziegler-Nichols methods. The parameters of the 

controller are varied until system obtaining a satisfactory 

response. 

Fractional order PID controllers applications – some case 

studies 

Fractional calculus helps control systems hit their mark 

Compared with classical (or integer-order) calculus, which 

forms the mathematical basis of most control systems, 

fractional calculus is better equipped to handle the time-

dependent effects observed in real-world processes. These 

include the memory-like behaviour of electrical circuits and 

chemical reactions in batteries. By recasting the design of a 

set point filter as a fractional calculus problem, researchers 
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created a filter that could not only suppress overshooting 

but also minimize the response time of a virtual controller. 

A side-by-side comparison showed that their fractional 

filter outperformed an integer-order filter, tracking the 

complex path of a given set point more closely. 

One drawback of this fractional design is that it's difficult 

to incorporate into existing automated systems, unlike 

integer-order filters, which are generally plug-and-play. But 

as the world of automation becomes increasingly complex, 

fractional filters may ultimately set the new standard for 

controlling everything from robotics and self-driving cars 

to medical devices. 

Design of Fractional–order PID Controllers for Time Delay 

Systems using Differential Evolution Algorithm 

The approach is based on a composition of the Smith 

predictor control method and Differential Evolution (DE) 

algorithm to arrive meliorated control efficiency of the time 

delay process. Currently, Differential Evolution (DE) has 

been revealed as an ordinary but very powerful thing for 

real parameter optimization. The five Parameters of FOPID 

controllers consisted, derivative constant, integral constant, 

derivative order and integral order, proportionality 

constant, thus its scheme is more complicated than that of 

conventional integer-order Proportional-Integral-Derivative 

(PID) controller. Manufacturing of the controller illustrate 

here is depends on user- specified peak settling time and 

overshoot and has been formulated as optimization issue 

with a single objective. Finally, better control performance 

and simulation results of the Fractional-Order PID (FOPID) 

will be obtained in these controllers in collation with those 

of the classical order PID controllers. For modeling FOPID 

controllers a smith predictor procedure for time delay 

systems and sagacious optimization method Proposed 

based on the DE algorithm. For FOPID controllers 

Fractional calculus can provide original and higher 

efficiency extension. even though, the difficulties of 

calculating FOPID controllers addition, because FOPID 

controllers also take into account the integral order and 

derivative order in comparison with common PID 

controllers. Using fractional PID controller we have 

significantly reduce percentage over rise time and settling 

time. Simulation results gives that the fractional PID 

controller has better-quality performance than integer PID 

controller. 

IV. CONCLUSION 

In this paper we observed that FOPID controllers has five 

parameters and provided two additional degrees (powers λ 

and μ) in transfer function to tune the controller, where as 

IOPID controllers having only three and FOPID controllers 

shows a considerable improvement in the performance to 

achieve a higher flexibility when comparing with IOPID 

controllers. 

So we conclude that from the applications and some case –

studies, that FOPID controller can set the new standard for 

controlling everything comparing with IOPID controllers. 
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