
International Journal for Research in Engineering Application & Management (IJREAM)
ISSN : 2494-9150 Vol-01, Issue 10, JAN 2016.

INJRV01I10005 www.ijream.org © 2016, IJREAM All Rights Reserved.

1

CONCURRENCY CONTROL IN DISTRIBUTED

DATABASE SYSTEMS

1Prof. Vinayak Sinde, 2Preeti A. Aware

1Asst. Professor, 2ME Student, 1,2SLRTCE, Mira Road, Mumbai,

Maharashtra, India.
1vdshinde@gmail.com, 2awarepreeti11@gmail.com

Abstract — Concurrency control in Distributed database system is analyzed in this paper. The need and improvement in

distributed database system is of utmost importance in today’s world. The difficulties mostly faced in distributed database

system is Protecting the ACID property i.e. when concurrent transactions perform read and write atomicity, consistency,

integrity and durability of the database should be preserved and Recovery method to be used when distributed database

crashes.

Keywords— Allocation, concurrency control, Distributed database, Distributed design, fragmentation, replication, transaction.

I. INTRODUCTION

Today’s business needs secure, reliable and easily

accessible information. One of the examples of distributed

database is of Aadhar card database. If the data is located in

the central database, it will be slow to retrieve the data. Also

the central server could become bottleneck due to thousands

of request. The distributed database system can be used in

this case to enhance the retrieval and the query can be

processed concurrently at different sites. Due to this fact

there is an increasing demand for client/server applications

and distributed database system. A distributed database can

be viewed as a single logical database that is made up of

several physical database from different computers that are

connected through interconnection network. This logical

database can also be called as a virtual database. The real

database is physically stored at different locations. Data can

be accessed by users at any location as if the data was stored

at the user’s own location. The access mechanism of

distributed database is made transparent to the users by

using a special software called distributed database

management system. The main aim of distributed database

management system software is to provide a mechanism by

which the distributed database appears to be as centralized

database to the users. This appearance of centralized

database can be achieved with the help of several different

kinds of transparencies like: Transaction transparency,

performance transparency, location transparency,

fragmentation transparency, schema change transparency,

and local DBMS transparency. The most vital issue in

distributed database system is concurrency control.

Concurrency control is the method of synchronizing

simultaneous access to a database in a multiuser database

management system. There are different techniques that

deliver concurrency control. Some of the techniques are:

Time stamping, two phase locking and Multiversion time

stamp.

II. MOTIVATION

The use of distributed database has been encourage due to

several business situations

Data communications costs and reliability: In the

distributed system when the data is geographically

dispersed, application that required the data can be

partitioned for processing at each site. The above method is

economical as it reduces the communication cost. The

second advantage is that it is cost effective to have smaller

computing power that to have a large computing power of a

single super computer.

Database recovery: Data can be replicated on several

computers. If the primary copy is damaged, data can be still

accessed due to replication and at the same time the primary

copy can be restored. One of the normal forms of distributed

International Journal for Research in Engineering Application & Management (IJREAM)
ISSN : 2494-9150 Vol-01, Issue 10, JAN 2016.

INJRV01I10005 www.ijream.org © 2016, IJREAM All Rights Reserved.

2

database recovery is replication of the data across several

sites.

Data sharing: Every business decision requires sharing of

data across different business unit. Data can be merged on

demand.

Distribution and autonomy of business unit: In modern

organizations departments and divisions are mostly

geographically dispersed and cross national boundaries.

Mostly each division has power to build its own information

system. This divisions frequently want the native data on

which they have control. Acquisition and business mergers

produce this kind of environment.

Improved performance: Several sites can store the data

retrieved from transactions. This helps in executing the

transaction in parallel. The performance of the system is

enhanced by using several resources in parallel.

Increased availability and reliability: The database

becomes unavailable to the users if the centralized system

fails. On the other hand in a distributed system if a

component fails the database is still available to the users.

Faster response: The data needed by the users at a

particular site can be fulfilled by the data stored at the site,

and it depends upon the way the data is distributed. The

query processing can be sped up as delays due to

communication and central processing is minimized. The

complex queries can be split up into simple sub queries and

processed in parallel at different sites for faster response. [6]

III. DISTRIBUTED DATABASE DESIGN

Distributed database system are needed for applications that

require distributed access and high availability in case of

failures. The examples of system that require distributed

database are automated system, financial institution and

airline reservation system. The technique used for

distributed system is same as that of centralized system in

addition to few factors.

Data fragmentation: We need to define logical unit for

data distribution and allocation in a distributed system. The

database can be fragmented into logical units call fragment

to be stored at separate sites. The tables are the simplest

logical units.

Data fragmentation are of three types:

Horizontal fragmentation:

The subset of rows in a table form the horizontal fragment.

The table is divided into fragment by selecting specific row

and then distributing this fragment to several sites in

distributed system. [1]

Consider a relation employee (Emp_id, Emp_name,

Emp_designation, and Emp_salary)

Condition: Emp1: fragmented with Emp_salary<= 10000

Emp1

Condition: Emp2: fragmented with Emp_salary>10000

Emp2

Vertical fragmentation: In vertical fragmentation table is

divided into attribute. Each vertical fragment should contain

the primary attribute, so that the entire table can be built.

Emp_id

Emp_name Emp_designation Emp_salary

001

Mr. Mark clerk 10000

002

Ms.Jane clerk 10000

003 MrWolworth manager 30000

004 Mr. oxford account 25000

Emp_id

Emp_name Emp_designation Emp_salary

001

Mr. Mark clerk 10000

002

Ms.Jane clerk 10000

Emp_id

Emp_name Emp_designation Emp_salary

003 MrWolworth manager 30000

004 Mr. oxford account 25000

International Journal for Research in Engineering Application & Management (IJREAM)
ISSN : 2494-9150 Vol-01, Issue 10, JAN 2016.

INJRV01I10005 www.ijream.org © 2016, IJREAM All Rights Reserved.

3

Consider a relation Emp (Emp_id, Emp_name,

Emp_designation, Emp_salary)

Emp1

Emp2

Hybrid fragmentation: The combination of both horizontal

and vertical fragmentation is called hybrid fragmentation.

With the help of join and union operator the original table

can be reconstructed.

Data replication: To achieve fault tolerance the data is

replicated at two or more sites. Several sites can contain the

copy of each fragment.[1]

IV. FUNDAMENTAL OF TRANSACTION

PROCESSING AND CONCURRENCY CONTROL

Transaction: A series of operations performed on database is

called transaction. The vital concern regarding transaction

management is if the database is consistent before the

initiation of transaction, then it has to be consistent after the

completion of transaction.

Properties of transaction: The consistency and reliability

of database can be achieved using ACID properties. The

Properties are Atomicity, Consistency, Isolation, and

Durability.

Atomicity: In this transaction is considered as a unit of

operation. It directs that the operations related to a

transaction should be complete or should not take place.

Consistency: The correctness of a transaction is its

consistency

Isolation: At all times the transactions should see consistent

database. When one transaction is modifying the database

other transactions should not be able to read or modify the

database.

Durability: This feature guarantees that when a transaction

commits its outcomes are permanently stored in the

database. Hence after a commit of transaction, even if the

system crashes, the outcomes after commit are not modified.

Concurrency control: In distributed database system many

users are concurrently accessing the database. The

mechanism of coordinating concurrent access to a

distributed database is called concurrency control. The user

is under the impression that he is working on a dedicated

database. The central objective for attaining this goal is to

prevent one database update interfere with another database

update.

V. DISTRIBUTED CONCURRENCY CONTROL

ALGORITHM

In this paper, we study some of the distributed concurrency

control algorithm. We review some of the prominent

features of the four algorithms. First we will explain the

concept of distributed transaction.

Distributed transaction: In this the transaction executes on

multiple processes on different machines. Distributed

transaction processing system are intended for

heterogeneous systems having transaction-aware resource

managers. Distributed transaction execution requires

coordination between the local resource managers and the

global transaction management system. The two basic

element of a distributed transaction are the transaction

processing monitor and the resource manager.

Acid properties must also be observed by distributed

transactions However it is difficult to maintain these

properties in distributed transaction because here any

Emp_id

Emp_name Emp_designation

001

Mr. Mark clerk

002

Ms.Jane clerk

003 MrWolworth manager

004 Mr. oxford account

Emp_id

Emp_salary

001

10000

002

10000

003 30000

004 25000

International Journal for Research in Engineering Application & Management (IJREAM)
ISSN : 2494-9150 Vol-01, Issue 10, JAN 2016.

INJRV01I10005 www.ijream.org © 2016, IJREAM All Rights Reserved.

4

process can fail. In case of such failure each process should

undo the operation it had done on behalf of the transaction.

By using the following two features distributed transaction

processing system can preserved the acid properties.

1. Recoverable process: These processes log the activity and

in case of failure they can be restored to their earlier state.

2. Commit protocol. In this several processes coordinate for

aborting or committing of a transaction.

The 2 phase locking protocol is the most common commit

protocol.

Distributed Two Phase Locking (2 PL): To guarantee

serializability of data there are different concurrency control

methods. Locking is one of the methods. There are several

locking methods. In distributed database system 2 phase

locking is the basic concurrency control protocols. It has the

method ‘write all and read any’. Read locks are set by the

transaction that requires to read the data. The read locks are

converted to write locks when the data requires to be

updated. For read lock it is sufficient to lock any one copy

of the data item but for write lock it has to be set on all the

copies of the data item. As the transaction executes write

locks are obtained. A write request is blocked until all the

copies of the previous write have successfully updated.

Untill the transaction have successfully committed or

aborted all the locks are withheld by the transaction.[2]

The 2 PL locking determines when the transactions can

obtain or release the locks. The transactions are forced to

acquire and release the locks in 2 steps by the 2 PL protocol.

Growing phase: Transactions can obtain locks but cannot

release any locks.

Shrinking phase: Transaction cannot obtain any new locks

they can only release the locks. At first the transaction

enters the Growing phase where it request for the desired

locks and then it enters the Shrinking phase where all the

locks obtained by it are released and new locks are not

obtained. In 2PL transactions should acquire all the needed

locks before moving into unlock state. The 2PL ensures

serializibility of data but it does not guarantee that deadlock

will not happen. When a transaction blocks, local deadlock

is checked and resolved by restarting the transaction with

the most initial startup time among the ones tangled in the

deadlock cycle.’ Snoop ‘process is used to detect global

dead lock. It requests from all sites ‘wait –for’ information

to check and resolve any global deadlocks.

 Wound Wait (WW): The distributed wound- wait is the

second algorithm. It follows the same method as 2PL

protocol. The deadlock problem is differently handled in

this algorithm. Rather than using ‘wait for’ information as in

2PL for checking local and global deadlock, timestamps are

used to prevent deadlocks in this algorithm. According to

their initial startup time each transaction is numbered. The

younger transactions are prevented from making the older

transaction wait. If the lock is requested by an older

transaction and this request requires the older transaction to

wait for younger transaction, the younger transaction is

wounded. It is restarted lest it is in the second phase of its

commit protocol. The possibility of deadlocks can be

eliminated when younger transaction waits for an older

transaction. [2]

 T1 is allowed to

t(T1) < t (T2) Abort and rolled back

t (T1) > t (T2) wait

 Example wound-wait algorithm

t (T1)<t (T2) : If the transaction that is requesting for the

lock on the data item t (T1) is older than the transaction that

currently holds the lock t (T2), then the requesting

transaction has to be aborted or rolled back.

t (T1) > t (T2):- If the transaction that is requesting for the

lock t (T1) is younger than the transaction t (t2) that is

currently holding the lock on the data item, then the

requesting transaction has to wait.

Basic timestamp ordering: To identify a transaction a

unique timestamp is created by the DBMS. According to the

order in which the transaction are submitted to the system, a

timestamp value is assigned to it. The start time of a

transaction is its start time. Basic timestamp ordering

algorithm is the third algorithm. Based on their timestamps

the transactions are being ordered. The participation of the

transaction can be serializable and the equivalent of a serial

International Journal for Research in Engineering Application & Management (IJREAM)
ISSN : 2494-9150 Vol-01, Issue 10, JAN 2016.

INJRV01I10005 www.ijream.org © 2016, IJREAM All Rights Reserved.

5

transaction is to schedule the transaction according to their

timestamp values. This is referred as timestamp ordering.

 It uses transaction start up time like the wound-wait but

rather in a different way. Time stamp is associated with

recently associated data items by the BTO. Instead of lock

approach concurrent data access is performed in the order of

timestamp values of the transactions. When a transaction

tries to perform out of order access, it is restarted. A read

request is permitted for a data item if the timestamp of the

requestor is greater than the item’s write request. A write

request is permitted if the requestor’s timestamp is greater

than the read timestamp of the data item. When the

timestamp of the requestor is less than the write timestamp,

then the update is ignored.[2] In case of replicated data ‘

write all ‘ and ‘read any’ method is used, so that write

request should be sent to all copies whereas read request can

be sent to any one copy. This algorithm can be integrated

with 2 phase commit as follows. Until commit time writes

keep their updates in private workplace.

Distributed Optimistic: The fourth algorithm is timestamp

based, distributed, optimistic concurrency control algorithm.

In this certification algorithm are exchanged during the

commit protocol. A write timestamp and a read timestamp is

maintain for each data item. Reading and updating of data

items by transaction is done freely. Updates are stored in

local workplace until commit time. To read the data item,

the transaction must remember version identifier (i.e. write

timestamp) related with the data item when it was read. The

transaction is assigned a global time stamp when all of its

cohorts have completed the work and reported the work to

the master. Each cohort is sent this timestamp in the

‘prepare to commit’ message, this certifies all writes and

reads as follows. [2]

The request for read is certified when

1. The current version of the item and the item that was
read is same.

2. None of the write with new timestamp has already

been certified.

The request for write is certified when

1. None of the later read have been certified and

consequently certified.

2. None of the later reads have already been locally

committed.[2]

Oracle's Distributed Database

A distributed database is a set of databases stored on

multiple computers that typically appears to applications as

a single database. Consequently, an application can

simultaneously access and modify the data in several

databases in a network. Each Oracle database in the system

is controlled by its local Oracle server but cooperates to

maintain the consistency of the global distributed database.

VI. CONCLLUSION

In this paper, we have discussed that compared to

centralized database, distributed database has more

advantages. Also we have described concurrency control

algorithms in distributed database like distributed 2PL,

wound wait, basic timestamp ordering, and distributed

optimistic. ACID properties of database is of utmost

importance and it has to be maintained while concurrently

accessing the database.

REFRENCES

[1] Gupta V.K., Sheetlani Jitendra, Gupta Dhiraj and Shukla

Brahma Datta, Concurrency control and Security issues in

Distributed Database system, Vol. 1(2), 70-73, August

(2012)

[2] Arun Kumar Yadav& Ajay Agarwal, an Approach for

Concurrency Control in Distributed Database System, Vol.

1, No. 1, pp. 137-141, January-June (2010).

[3] Navathe Elmasri, Database Concepts, Pearson

Education, V edition (2008).

[4] Fundamentals of DBMS, Lakhanpal Publisher, III

edition (2008).

[5] Swati Gupta, Kuntal Saroha, Bhawna, Fundamental

Research of Distributed Database, IJCSMS International

Journal of Computer Science and Management Studies, Vol.

11, Issue 02, Aug 2011.

6] Distributed Database

http://wps.pearsoned.co.uk/wps/media/objects/10977/11240

737/Web%20chapters/Chapter%2012_WEB.pdf

