
International Journal for Research in Engineering Application & Management (IJREAM)
ISSN : 2494-9150 Vol-02, Issue 08, Nov 2016

23 | IJREAMV02I082017 www.ijream.org © 2016, IJREAM All Rights Reserved.

Abstract We Consider multi-dimensional dataset where each data point has set of keyword in feature space allows for the

development of new tools to query and explore these multidimensional dataset. In this paper, we study nearest keyword

set Queries on text reach multidimensional dataset. We propose a novel method called ProMiSH(Projection and

Multiscale Hashing) that uses random projection and hash-based index structure. Our experimental result shows that

ProMiSH has Speedup over state-of-art-tree-based techniques. Keyword-based search in text-rich multi-dimensional

datasets facilitates many novel applications and tools. In this paper, we consider objects that are tagged with keywords

and are embedded in a vector space. For these datasets, we study queries that ask for the tightest groups of points

satisfying a given set of keywords.

Keywords: NKS, Multi-Dimensional, data, Indexing, Hashing.

I. INTRODUCTION
1

In Existing techniques using tree based indexes suggest

possible solution to NKS queries on multi-dimensional

dataset, the performance of these algorithms decline sharply

with the increase of size or dimensionality in dataset.

Therefore there is need for an efficient algorithm that scales

with dataset dimension, and yield practical query efficiency

on large datasets. Multi-dimensional dataset. An NKS query

is set of user-provide keywords, and result of the query may

include k-sets of data points each of which contains all the

query keywords and forms one of the top-k tightest cluster in

the multi-dimensional space. In this paper We study nearest

keyword set queries on text-rich multi-dimensional datasets.

An NKS query is set of user provided keywords, and the

result of the query may include k sets of data points each of

which contains all the query keywords and forms one of the

top-k tightest Cluster in the multi-dimensional space.

Following are some applications of NKS queries,

1)NKS queries can also reveal geographic patterns. GIS can

characterize a region by a high-dimensional set of attributes,

such as pressure, humidity, and soil types Meanwhile, these

regions can also be tagged with information such as diseases.

An epidemiologist can formulate NKS queries to discover

patterns by finding a set of similar regions with all the

diseases of her interest

 Propose Pro MiSH(short for Projection and Multi-scale

Hashing) to enable fast processing for NKS Queries. In

Particular, developed an exact ProMiSH(refer to as

ProMiSH-E) that always retrieves the optimal top-k results

and an approximate ProMiSH(referred to as ProMiSH-A) that

is more efficient in term of time and space ,and is able to

obtained near-optimal results in practice. ProMiSH-E uses a

set of hash tables and inverted indexes to perform a localized

search. The hashing technique is inspired by Locality

Sensitive Hashing (LSH), which is state-of-the-art method for

nearest neighbor search in high-dimensional spaces. Unlike

Novel Method for NKS Search in Multidimensional

Dataset Using Advance Promish & Ranking Function

1
Shilpa Thakare,

2
Prof. Shinde Jayashri

1
PG Student,

2
Asst. Professor,

1,2
Department of Computer Engineering, Late G. N. Sapkal College of

Engineering, Nashik, Maharashtra, India.
1
shilpa.thakare30@gmail.com ,

2
jv.shinde@rediffmail.com

International Journal for Research in Engineering Application & Management (IJREAM)
ISSN : 2494-9150 Vol-02, Issue 08, Nov 2016

24 | IJREAMV02I082017 www.ijream.org © 2016, IJREAM All Rights Reserved.

LHS-based method that allow only approximate search with

probabilistic guarantees, the index structure in ProMiSH-E

supports accurate search. ProMiSH-E creates hash tables at

multiple bin-widths, called index levels. A single round of

search in a Hash table yield subset of points that contain

query results, and ProMiSH-E explores each subset using a

fast pruning based algorithm ProMiSH-A is an approximate

variation of ProMiSH-E for better time and space efficiency.

using this algorithm evaluate the performance of ProMiSH on

both real and synthetic datasets and employ state-of-art

VbR*-Tree and CoSKQ as baselines. The empirical results

reval that ProMiSH Consistently outperforms the baseline

algorithms and ProMiSH-A

II. LITRATURE SURVEY

A variety of related queries have been studied in literature on

text-rich spatial datasets. Locating Mapped Resources in Web

2.0 [9] in this technique locating geographical resources and

proposed an efficient tag-centric query processing strategy.

find set of nearest co-related objects which together match the

query tags. Felipe et al. [1] present an efficient method to

answer top-k special keyword queries. To do so, we introduce

an indexing structure called IR2-Tree(Information Retrieval

R-Tree)which combines an R-Tree with superimposed text

signatures. Author present an algorithms that construct and

maintain an IR2-Tree and use it to answer top-k spatial

keyword queries. its show superior performance and excellent

scalability.IR2Tree to rank object from spatial dataset based

on combination of their distances to the query location and

relevance of their text description to the query keyword. Top-

k spatial keyword queries which is based on tight integration

of data structure and algorithm used in special database

search and information retrieval R-Tree(IR2-Tree)which is

structure based on the R-Tree at query time and incremental

algorithm is employed that uses IR2-Tree which is structure

based on the R-Tree at query time and incremental

algorithms.is employed that uses IR2-Tree which is structure

based on the R-Tree at query time and incremental algorithm.

other related queries include aggregate nearest keyword

search in spatial database [4] ,in this query retrieves k objects

from Q with minimum sum of distances to it’s nearest point in

D such that each nearest point matches at least one query

keyword for processing this query several algorithm proposed

using IR2-Tree as index structure.

Another track of related works deal with m-closest keyword

queries[2].In[2],bR*-Tree is developed based on R*-tree[3]

that stores bitmaps and minimum bounding rectangles(MBRs)

of keywords in every node along with points MBRs.bR-Tree

also suffers from a high storage cost; therefore Zang et al

Modified bR*-Tree to create virtual bR*-tree in memory at

run time. Virtual bR*-tree is created from a pre-stored r*-

Tree, which indexes all the points, and an inverted index

which stored keyword information and path from the root

node in R*-Tree for each point. Both bR*-Tree and virtual

bR*-Tree shares similar performance weaknesses as bR*-

Tree.

Tree-based indexes, such as M-tree[5] ,is proposed to

organize and search large dataset from generic. M-Tree

always balanced several heuristic split alternatives are

considered and experimentally evaluated. This M-Tree have

been extensively investigated for nearest neighbor search in

high dimensional spaces. this index fails to scale to

dimensions greater than 10 because of the curse of

dimensionality. Random projection with hashing [6][7][8] has

comes to be the state-of-the-art method for nearest neighbor

search in high dimensional dataset. Jon M. Kleinberg[8]

Develop new approach to the nearest-neighbor problem,

based on a method for combining randomly chosen one

dimensional projections of the underlying point set. Two

algorithms are introduce in this first for finding epsilon-

approximate nearest neighbors and second epsilon-

approximate nearest-neighbor algorithm with near-linear

storage and query time improves asymptotically linear search

in all dimensions. Aristides Gionis [6] examine a novel

scheme for approximate similarity search based on hashing.

the basic idea is to hash the points from the database so as to

ensure that the probability of collision is much higher for

objects that are close to each other than for those that are far

International Journal for Research in Engineering Application & Management (IJREAM)
ISSN : 2494-9150 Vol-02, Issue 08, Nov 2016

25 | IJREAMV02I082017 www.ijream.org © 2016, IJREAM All Rights Reserved.

apart. the method gives significant improvement in running

time over other methods for searching in high dimensional

spaces based on hierarchical tree de-composition. This

scheme scales well even for relatively large number of

dimensions(more than 50). previous technique[6] solve this

problem efficiently only for the approximate case Accurate

and efficient Near neighbor Search in High Dimensional

Spaces [7] In this are design to solve r-near neighbor queries

for a fixed query range or for set of query ranges with

probabilistic guarantees .and then extend for nearest neighbor

queries. Vishwakarma Singh introduce novel indexing and

querying scheme called Spatial Intersection and Metric

Pruning(SIMP) Empirical study of this method on three real

datasets having dimensions between 32 to 256 and size up to

10 million show a superior performance of SIMP over LSH.

III. SYSTEM ARCHITECTURE

Fig. 1 System Architecture

Modules Information:

a) Search Algorithm Module

ProMiSH referred to as ProMiSH-A. We start with the

algorithm description of ProMiSH-A, and then analyze its

approximation quality. ProMiSH-E highly depends on an

efficient search algorithm that finds top- k results from a

subset of data points.

b) HI Construction Module

It consists of multiple hash tables and inverted indexes

referred to as HI. HI is controlled by three parameters:

(1) Index level(L)

HI at all the index level then it performs a search in the

complete dataset D.

(2) Number of random unit vectors(m)

We consider its projection space as a segment [0, pMax] and

partition the segment into 2
(L-s+1)

 +1 overlapping bins, where

each bin has width and is equally overlapped with two other

bins. We conduct the projection space partition on all the m

random unit vectors.

(3) Hash table size(B)

A given a dictionary V and hash table H
(s)

, we create the

inverted index I
(s)

khb. In this inverted index, keys are still

keywords. HI with one pair of hash table and inverted index

shown in the dotted rectangle.

c) Ranking functions

In the future, we plan to explore other scoring schemes for

ranking the result sets. In one scheme, we may assign weights

to the keywords of a point by using techniques like tf-idf.

Then, each group of points can be scored based on distance

between points and weights of keywords. Furthermore, the

criteria of a result containing all the keywords can be relaxed

to generate results having only a subset of the query

keywords.

d) Disk extension

We plan to explore the extension of ProMiSH to disk.

ProMiSH-E sequentially reads only required buckets from Ikp

to find points containing at least one query keyword.

Therefore, Ikp can be stored on disk using a directory-file

structure. We can create a directory for Ikp. Each bucket of

Ikp will be stored in a separate file named after its key in the

directory. Moreover, ProMiSH-E sequentially probes HI data

structures starting at the smallest scale to generate the

candidate point ids for the subset search, and it reads only

required buckets from the hash table and the inverted index of

International Journal for Research in Engineering Application & Management (IJREAM)
ISSN : 2494-9150 Vol-02, Issue 08, Nov 2016

26 | IJREAMV02I082017 www.ijream.org © 2016, IJREAM All Rights Reserved.

a HI structure. Therefore, all the hash tables and the inverted

indexes of HI can again be stored using a similar directory

file structure as Ikp, and all the points in the dataset can be

indexed into a B+-Tree [36] using their ids and stored on the

disk. In this way, subset search can retrieve the points from

the disk using B+-Tree for exploring the final set of results.

IV. CONCLUSION

The problem of top-k nearest keyword set search in multi-

dimensional datasets. We proposed a novel index called

ProMiSH based on random projections and hashing. Based on

this index, we developed ProMiSH-E that finds an optimal

subset of points and ProMiSH-A that searches near-optimal

results with better efficiency. Our empirical results show that

ProMiSH is faster than state-of-the-art tree-based techniques,

with multiple orders of magnitude performance improvement.

Moreover, our techniques scale well with both real and

synthetic datasets.

ACKNOWLEDGMENT

It gives us great pleasure in presenting the preliminary project

report on “Novel method for nks search in multidimensional

dataset using advance promish and ranking function”.

I would like to take this opportunity to thank my internal

guide Prof. J. V. Shinde for giving me all the help and

guidance I needed. I am really grateful to them for their kind

support. Their valuable suggestions were very helpful.

REFERENCES

[1] I. De Felipe, V. Hristidis, and N. Rishe, “Keyword search on

spatial databases,” in ICDE, 2008, pp. 656–665.

[2] D. Zhang, Y. M. Chee, A. Mondal, A. K. H. Tung, and M.

Kitsuregawa,“Keyword search in spatial databases: Towards

searching by document,” in ICDE, 2009, pp. 688–699.

[3] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The

R*-tree: An fficient and robust access method for points and

rectangles,” in SIGMOD, 1990, pp. 322–331.

[4] Z. Li, H. Xu, Y. Lu, and A. Qian, “Aggregate nearest keyword

search in spatial databases,” in Asia-Pacific Web Conference,

2010.

[5] P. Ciaccia, M. Patella, and P. Zezula, “M-tree: An efficient

access method for similarity search in metric spaces,” in VLDB,

1997.

[6] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high

dimensions via hashing,” in VLDB, 1999, pp. 518–529.

[7] V. Singh and A. K. Singh, “Simp: accurate and efficient near

neighbor search in high dimensional spaces,” in EDBT, 2012, pp.

492–503.

[8] J. M. Kleinberg, “Two algorithms for nearest-neighbor search

in high dimensions,” in STOC, 1997, pp. 599–608.

[9] D. Zhang, B. C. Ooi, and A. K. H. Tung, “Locating mapped

resources in web 2.0,” in ICDE, 2010, pp. 521–532.

[10] V. Singh, S. Venkatesha, and A. K. Singh, “Geo-clustering of

images with missinggeotags,” in GRC, 2010, pp. 420–425.

