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Abstract We Consider multi-dimensional dataset where each data point has set of keyword in feature space allows for the 

development of new tools to query and explore these multidimensional dataset. In this paper, we study nearest keyword 

set Queries on text reach multidimensional dataset. We propose a novel method called ProMiSH(Projection and 

Multiscale Hashing) that uses random projection and hash-based index structure. Our experimental result shows that 

ProMiSH has Speedup over state-of-art-tree-based techniques. Keyword-based search in text-rich multi-dimensional 

datasets facilitates many novel applications and tools. In this paper, we consider objects that are tagged with keywords 

and are embedded in a vector space. For these datasets, we study queries that ask for the tightest groups of points 

satisfying a given set of keywords. 

Keywords: NKS, Multi-Dimensional, data, Indexing, Hashing. 

I. INTRODUCTION
1
 

In Existing techniques using tree based indexes suggest 

possible solution to NKS queries on multi-dimensional 

dataset, the performance of these algorithms decline sharply 

with the increase of size or dimensionality in dataset. 

Therefore there is need for an efficient algorithm that scales 

with dataset dimension, and yield practical query efficiency 

on large datasets. Multi-dimensional dataset. An NKS query 

is set of user-provide keywords, and result of the query may 

include k-sets of data points each of which contains all the 

query keywords and forms one of the top-k tightest cluster in 

the multi-dimensional space. In this paper We study nearest 

keyword set queries on text-rich multi-dimensional datasets. 

An NKS query is set of user provided keywords, and the 

result of the query may include k sets of data points each of 

which contains all the query keywords and forms one of the 

top-k tightest Cluster in the multi-dimensional space. 

 
 

Following are some applications of NKS queries, 

1)NKS queries can also reveal geographic patterns. GIS can 

characterize a region by a high-dimensional set of attributes, 

such as pressure, humidity, and soil types Meanwhile, these 

regions can also be tagged with information such as diseases. 

An epidemiologist can formulate NKS queries to discover 

patterns by finding a set of similar regions with all the 

diseases of her interest 

 Propose Pro MiSH(short for Projection and Multi-scale 

Hashing) to enable fast processing  for NKS Queries. In 

Particular, developed an exact ProMiSH(refer to as 

ProMiSH-E) that always retrieves  the optimal top-k results 

and an approximate ProMiSH(referred to as ProMiSH-A) that 

is more efficient in term of time and space ,and is able to 

obtained near-optimal results in practice. ProMiSH-E uses a 

set of hash tables and inverted indexes to perform a localized 

search. The hashing technique is inspired by Locality 

Sensitive Hashing (LSH), which is state-of-the-art method for 

nearest neighbor search in high-dimensional spaces. Unlike 
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LHS-based method that allow only approximate search with 

probabilistic guarantees, the index structure in ProMiSH-E 

supports accurate search. ProMiSH-E creates hash tables at 

multiple bin-widths, called index levels. A single round of 

search in a Hash table yield subset of points that contain 

query results, and ProMiSH-E explores each subset using a 

fast pruning based algorithm ProMiSH-A is an approximate 

variation of  ProMiSH-E for better time and space efficiency. 

using this algorithm evaluate the performance of ProMiSH on 

both real and synthetic datasets and employ state-of-art 

VbR*-Tree and CoSKQ as baselines. The empirical results 

reval that ProMiSH Consistently outperforms the baseline 

algorithms and ProMiSH-A 

II. LITRATURE SURVEY  

A variety of related queries have been studied in literature on 

text-rich spatial datasets. Locating Mapped Resources in Web 

2.0 [9] in this technique locating geographical resources and 

proposed an efficient tag-centric query processing strategy. 

find set of nearest co-related objects which together match the 

query tags. Felipe et al. [1] present an efficient method to 

answer top-k special keyword queries. To do so, we introduce 

an indexing structure called IR2-Tree(Information Retrieval 

R-Tree)which combines an R-Tree with superimposed text 

signatures. Author present an algorithms that construct and 

maintain an IR2-Tree and use it to answer top-k spatial 

keyword queries. its show superior performance and excellent 

scalability.IR2Tree to rank object from spatial dataset based 

on combination of their distances to the query location and 

relevance of their text description to the query keyword. Top-

k spatial keyword queries which is based on tight integration 

of data structure and algorithm used in special database 

search  and information retrieval R-Tree(IR2-Tree )which is 

structure based on the R-Tree at query time and incremental 

algorithm is employed that uses IR2-Tree which is structure 

based on the R-Tree at query time and incremental 

algorithms.is employed that uses IR2-Tree which is structure 

based on the R-Tree at query time and incremental algorithm. 

other related queries include aggregate nearest keyword 

search in spatial database [4] ,in this query retrieves k objects 

from Q with minimum sum of distances to it’s nearest point in 

D such that each nearest point matches at least one query 

keyword for processing this query several algorithm proposed 

using IR2-Tree as index structure. 

Another track of related works deal with m-closest keyword 

queries[2].In[2],bR*-Tree is developed based on R*-tree[3] 

that stores bitmaps and minimum bounding rectangles(MBRs) 

of keywords in every node along with points MBRs.bR-Tree 

also suffers from a high storage cost; therefore Zang et al 

Modified bR*-Tree to create virtual bR*-tree in memory at 

run time. Virtual bR*-tree is created from a pre-stored r*-

Tree, which indexes all the points, and an inverted index 

which stored keyword information and path from the root 

node in R*-Tree for each point. Both bR*-Tree and virtual 

bR*-Tree shares similar performance weaknesses as bR*-

Tree. 

Tree-based indexes, such as M-tree[5] ,is proposed to 

organize and search large dataset from generic. M-Tree 

always balanced several heuristic split alternatives are 

considered and experimentally evaluated. This M-Tree have 

been extensively investigated for nearest neighbor search in 

high dimensional spaces. this index fails to scale to 

dimensions greater than 10 because of the curse of 

dimensionality. Random projection with hashing [6][7][8] has 

comes to be the state-of-the-art method for nearest neighbor 

search in high dimensional dataset. Jon M. Kleinberg[8] 

Develop new approach to the nearest-neighbor problem, 

based on a method for combining randomly chosen one 

dimensional projections of the underlying point set. Two 

algorithms are introduce in this first for finding epsilon-

approximate nearest neighbors and second epsilon-

approximate nearest-neighbor algorithm with near-linear 

storage and query time improves asymptotically linear search 

in all dimensions. Aristides Gionis [6] examine a novel 

scheme for approximate similarity search based on hashing. 

the basic idea is to hash the points from the database so as to 

ensure that the probability of collision is much higher for 

objects that are close to each other than for those that are far 
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apart. the method gives significant improvement in running 

time over other methods for searching in high dimensional 

spaces based on hierarchical tree de-composition. This 

scheme scales well even for relatively large number of 

dimensions(more than 50). previous technique[6] solve this 

problem efficiently only for the approximate case Accurate 

and efficient Near neighbor Search in High Dimensional 

Spaces [7] In this  are design to solve r-near neighbor queries 

for a fixed query range or for set of query ranges with 

probabilistic guarantees .and then extend for nearest neighbor 

queries. Vishwakarma Singh introduce novel indexing and 

querying scheme  called Spatial Intersection and Metric 

Pruning(SIMP) Empirical study of this method  on three real 

datasets having dimensions between 32 to 256 and size up to 

10 million show a superior performance of SIMP over LSH. 

III. SYSTEM ARCHITECTURE 

Fig. 1 System Architecture 

Modules Information: 

a) Search Algorithm Module 

ProMiSH referred to as ProMiSH-A. We start with the 

algorithm description of ProMiSH-A, and then analyze its 

approximation quality. ProMiSH-E highly depends on an 

efficient search algorithm that finds top- k results from a 

subset of data points. 

 

b) HI Construction Module 

It consists of multiple hash tables and inverted indexes 

referred to as HI. HI is controlled by three parameters: 

(1) Index level(L) 

HI at all the index level then it performs a search in the 

complete dataset D. 

(2) Number of random unit vectors(m) 

We consider its projection space as a segment [0, pMax] and 

partition the segment into 2
(L-s+1)

 +1 overlapping bins, where 

each bin has width and is equally overlapped with two other 

bins. We conduct the projection space partition on all the m 

random unit vectors. 

(3) Hash table size(B) 

A given a dictionary V and hash table H
(s)

, we create the 

inverted index I
(s)

khb. In this inverted index, keys are still 

keywords. HI with one pair of hash table and inverted index 

shown in the dotted rectangle. 

 

c) Ranking functions 

In the future, we plan to explore other scoring schemes for 

ranking the result sets. In one scheme, we may assign weights 

to the keywords of a point by using techniques like tf-idf. 

Then, each group of points can be scored based on distance 

between points and weights of keywords. Furthermore, the 

criteria of a result containing all the keywords can be relaxed 

to generate results having only a subset of the query 

keywords. 

d) Disk extension 

We plan to explore the extension of ProMiSH to disk. 

ProMiSH-E sequentially reads only required buckets from Ikp 

to find points containing at least one query keyword. 

Therefore, Ikp can be stored on disk using a directory-file 

structure. We can create a directory for Ikp. Each bucket of 

Ikp will be stored in a separate file named after its key in the 

directory. Moreover, ProMiSH-E sequentially probes HI data 

structures starting at the smallest scale to generate the 

candidate point ids for the subset search, and it reads only 

required buckets from the hash table and the inverted index of 
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a HI structure. Therefore, all the hash tables and the inverted 

indexes of HI can again be stored using a similar directory 

file structure as Ikp, and all the points in the dataset can be 

indexed into a B+-Tree [36] using their ids and stored on the 

disk. In this way, subset search can retrieve the points from 

the disk using B+-Tree for exploring the final set of results. 

IV. CONCLUSION 

The problem of top-k nearest keyword set search in multi-

dimensional datasets. We proposed a novel index called 

ProMiSH based on random projections and hashing. Based on 

this index, we developed ProMiSH-E that finds an optimal 

subset of points and ProMiSH-A that searches near-optimal 

results with better efficiency. Our empirical results show that 

ProMiSH is faster than state-of-the-art tree-based techniques, 

with multiple orders of magnitude performance improvement. 

Moreover, our techniques scale well with both real and 

synthetic datasets. 
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