Invariant submanifolds of LCS-manifold admitting semi-symmetric metric connection

1Ananda K, 2Sudhir Patel,
1,2Assistant Professor, New Horizon College of Engineering, Bangalore, India,
1anandak.nhce@gmail.com, 2sudhirfriends@gmail.com

Abstract: In this paper, we study invariant submanifolds of (LCS)-manifold admitting semi-symmetric metric connection. We prove that the submanifolds also carry the semi-symmetric metric connection. Further, we also consider recurrent, 2-recurrent and generalized 2-recurrent submanifolds of (LCS)-manifold admitting semi-symmetric metric connection and we investigate the conditions for all the above mentioned submanifolds to be totally geodesic.

Key Words: Invariant submanifold, (LCS)-manifold, recurrent, 2-recurrent, generalized 2-recurrent and totally geodesic.

I. INTRODUCTION

Let \((M, g)\) be an \(n\)-dimensional Riemannian manifold with metric \(g\) and Let \(\nabla\) be the Levi-civita connection on \(M\). A linear connection \(\overline{\nabla}\) on \((M, g)\) is said to be Semi-symmetric [1] if the torsion tensor \(T\) of connection \(\overline{\nabla}\) satisfies

\[T(X, Y) = W(X)Y - W(Y)X \]

where \(W\) is a 1-form on \(M\). Further let \(\rho\) be the vector field associated with it, that is \(W(X) = g(X, \rho)\) for any differentiable vector field \(X\) on \(M\). A Semi-symmetric linear connection \(\overline{\nabla}\) is called Semi-symmetric metric connection [2] if it satisfies \(\overline{\nabla}g = 0\). In 1924, Friedman and Schouten [1] introduced the idea of semi-symmetric linear connection on a differentiable manifold. Further in 1932, The idea of metric connection with torsion on a Riemannian manifold was introduced by H.A. Hayden [2]. Later, Yano [3] synthesized the notion of semi-symmetric connection and a metric connection with torsion on a Riemannian manifold in 1970. After the properties of semi-symmetric metric connection have been studied by many authors like K.S. Amur and S.S. Pujar [4], C.S. Bagewadi, D.G. Prakash and Venkatesha [5,6], A. Sharifuddin and S.I. Hussain [7], U.C. De and G. Pathak [8] etc. Recently, in 2003 A.A. Shaikh [9] introduced and studied Lorentzian concircular structure manifold (briefly (LCS)-manifold) which generalizes the notion of LP-sasakian manifolds, introduced by Matsumoto [10] in 1989. Then Shaikh and Baishya [11,12] have been studied on the applications of \((LCS)_n\) manifolds to the general theory of relativity and cosmology. It is to be noted that \((LCS)_n\) manifold remains invariant under a D-homothetic transformation [13]. On the other hand in 2008, A.A. Shaikh, T.Basu and S. Eyasmin [20] proved that existence of \(\phi\)-recurrent \((LCS)_1\) manifold which is neither locally symmetric nor locally \(\phi\)-symmetric by non trivial examples. Later, G.T. Shreenivasa, Venkatesha, C.S. Bagewadi [23] also studied \((LCS)_{2n+1}\)-manifolds in 2009. Further in 2011 Atceken and Hui have been studied on the submanifold of an \((LCS)_n\). The \((LCS)\) manifolds have been also studied by Atceken [14], Narain and Yadav [15], Prakash [16], Shaikh [17], Shaikh et al. [18,19], Shaikh and Bihm [21], shaikh and Hui [21], Sreenivasa et al. [22], Yadav et al. [23] and others. Recently, in 2016 Shaikh, Matsuyama and Hui have been studied on invariant submanifolds of \((LCS)_n\)-manifolds and it deals with the study of some basic properties of invariant submanifolds of \((LCS)_n\)-manifolds.

If \(\nabla\) denotes semi-symmetric metric connection on a contact metric manifold, then it is given by [13]

\[\overline{\nabla}X = \nabla Y + \eta(Y)X - g(X,Y)\xi, \quad (1.1) \]

where \(\eta(Y) = g(Y, \xi)\).

The covariant differential of the \(p^{th}\) order, \(p \geq 1\), of a \((0, k)\)-tensor field \(T\), \(k \geq 1\), defined on a Riemannian manifold \((M, g)\) with the Levi-civita connection \(\nabla\), is denoted by \(\nabla^T\).

The tensor \(T\) is said to be recurrent if it satisfies

\[(\nabla T)(X_1, ..., X_k; X) = (\mathcal{L}_X T)(X_1, ..., X_k; X) \]

On \(M\). where \(X, Y, X_1, Y_1, ..., X_k, Y_k \in \mathcal{TM}\). From (1.2) it follows that at a point \(x \in M\), if the tensor \(T\) is non zero, then there exist a unique 1-form \(\phi\) and a \((0, 2)\)-tensor \(\psi\), defined on a neighbourhood \(U\) of \(x\) such that

\[\nabla^T = \mathcal{T} \phi, \quad \phi = d(log\|T\|). \]

Similarly, the tensor \(T\) is said to be \(2\)-recurrent if it satisfies

(1.3)
(\nabla^2 T)(X_1, \ldots, X_k; X, Y)T(Y_1, \ldots, Y_k) = \\
(\nabla^2 T)(Y_1, \ldots, Y_k; X, Y)T(X_1, \ldots, X_k), \quad (1.4)

On M. Where \(X, Y, X_1, Y_1, \ldots, X_k, Y_k \in TM \). Now from (1.4) it follows that at a point \(x \in M \), if the tensor \(T \) is non zero, then there exist a \((0, 2)\)-tensor \(\psi \), defined on a neighborhood \(U \) of \(x \) such that

\[
\nabla^2 T = T \otimes \psi, \quad (1.5)
\]

hold on \(U \), where \(\| T \| \) denotes the norm of \(T \) and \(\| T \|^2 = g(T, T) \). The tensor \(T \) is said to be generalized 2-recurrent if

\[
((\nabla^2 T)(X_1, \ldots, X_k; X, Y) - (\nabla^2 T)(Y_1, \ldots, Y_k; X, Y))T(Y_1, \ldots, Y_k) = \\
((\nabla^2 T)(Y_1, \ldots, Y_k; X, Y) - (\nabla^2 T)(X_1, \ldots, X_k; X, Y))T(X_1, \ldots, X_k), \quad (1.6)
\]

hold on \(M \), where \(\phi \) is a 1-form on \(M \). From (1.6) it follows that at a point \(x \in M \) if the tensor \(T \) is non zero, then there exists a \((0, 2)\)-tensor \(\psi \), defined on a neighborhood \(U \) of \(x \) such that

\[
\nabla^2 T = \nabla T \otimes \phi + T \otimes \psi, \quad (1.7)
\]

holds on \(U \).

II. ISOMETRIC IMMERSSION

Let \(f: (M, g) \rightarrow (\tilde{M}, \tilde{g}) \) be an isometric immersion from an \(n \)-dimensional Riemannian manifold \((M, g)\) into \((n+d)\)-dimensional Riemannian manifold \((\tilde{M}, \tilde{g})\), \(n \geq 2 , \ d \geq 1 \). We denote by \(\nabla \) and \(\tilde{\nabla} \) as Levi-Civita connection of \(M^n \) and \(\tilde{M}^{n+d} \) respectively. Then the formulas of Gauss and Weingarten are given by

\[
\tilde{\nabla}_X Y = \nabla_X Y + \sigma(X, Y), \quad (2.1)
\]

\[
\tilde{\nabla}_X N = -A_N X + \tilde{\nabla}_X N, \quad (2.2)
\]

for any tangent vector fields \(X, Y \) and the normal vector field \(N \) on \(M \). Where \(\sigma \)-second fundamental form, \(A \)-the shape operator, \(\nabla^1 \)-is the normal connection.

If the second fundamental form \(\sigma \) is identically zero, then the manifold is said to be totally geodesic. The second fundamental form \(\sigma \) and \(A_N \) are related by

\[
\tilde{g}(\sigma(X, Y), N) = g(A_N X, Y), \quad (2.3)
\]

for tangent vector fields \(X, Y \).

The first and second covariant derivatives of the second fundamental form \(\sigma \) are given by

\[
(\tilde{\nabla}_X \sigma)(Y, Z) = \nabla^1_X (\sigma(Y, Z)) - \sigma(\nabla_X Y, Z) - \sigma(Y, \nabla_X Z), \quad (2.4)
\]

\[
(\nabla^2 \sigma)(Z, W, X, Y) = (\tilde{\nabla}_X \nabla_Y \sigma)(Z, W), \quad (2.5)
\]

respectively, where \(\tilde{\nabla} \) is called the Vander Waerden-Bortolotti connection of \(M \) [7].

If

\[
\tilde{\nabla}_\sigma = 0
\]

then \(M \) is said to have parallel second fundamental form [7].

III. LCS-MANIFOLD

In 2003 A. A. Shaikh the first author introduced the notion of Lorentzian concircular structure manifold (briefly, \(LCS \)-manifolds) and these are applied in General theory of relativity and cosmology.

An \(n \)-dimensional Lorentzian Manifold \(M \) is a smooth connected para-compact Housdorff manifold with a Lorentzian metric \(g \) that is, \(M \) admits a smooth symmetric tensor field \(g \) of type \((0, 2)\) such that for each point \(p \in M \), the tensor \(g_p: T_p M \times T_p M \rightarrow R \) is a non-degenerate inner product of signature \((- , +, +, +)\), where \(T_p M \) denotes the tangent vector space of \(M \) at \(p \) and \(R \) is the real number space. A non-zero vector \(v \in T_p M \) is said to be timelike if it satisfies \(g_p(v, v) < 0 \). The category to which a given vector fields is called its causal character.

In a Lorentzian manifold \((M, g)\), a vector field \(P \) defined by \(g(X, P) = A(X) \), for any \(X \) on \(M \), is said to be a concircular vector field if

\[
(\tilde{\nabla}_X A)(Y) = \alpha\{g(X, Y) + \omega(X)A(Y)\}, \quad (3.1)
\]

for \(Y \) on \(M \), where \(\alpha \) is a non-zero scalar and \(\omega \) is a closed 1-form.

Let \(M \) be Lorentzian manifold admitting a unit timelike concircular vector field \(\xi \), called the structure vector field of the manifold. Then we have

\[
g(\xi, \xi) = -1, \quad (3.2)
\]

Since \(\xi \) is a unit concircular vector field, it follows that there exist a non-zero 1-form \(\eta \) such that

\[
g(X, \xi) = \eta(X), \quad (3.3)
\]

The following equation \((\tilde{\nabla}_X \eta)(Y) = \alpha\{g(X, Y) + \eta(X)\eta(Y)\} \),

holds for all vector fields \(X, Y \) on \(M \) and \(\alpha \) is a non-zero scalar function satisfies

\[
\tilde{\nabla}_X \alpha = X(\alpha) = d\alpha(X) = \rho \eta(X), \quad (3.5)
\]

\(\rho \) being a certain scalar function given by

\[
\rho = -\xi(\alpha), \quad (3.6)
\]
If we put
\[\nabla_X \xi = \alpha \varphi X, \]
(3.7)

Then from (3.4) and (3.7) we have
\[\varphi X = X + \eta(X) \xi, \]
(3.8)

From which it follows that
\[\varphi^2 = X + \eta(X) \xi, \]
(3.9)

that is, \(\varphi \) is a symmetric (1,1) tensor field, called the structure tensor of the manifold. The n-dimensional Lorentzian manifold \(M \) together with the unit timelike concircular vector field \(\xi \), its associated 1-form \(\eta \), and an (1,1) tensor field \(\varphi \) is said to be a Lorentzian concircular structure manifold (briefly, \((LCS)_n\)-manifold). Especially, if \(a = 1 \), then we can obtain the LP-Sasakian structure of Matsumoto.

In \((LCS)_n\)-manifold, the following results hold
\[\eta(\xi) = g(\xi, \xi) = -1, \phi^2 X = X + \eta(X) \xi, g(X, \xi) = \eta(X), \phi \xi = 0, \eta \circ \phi = 0, \]
(3.10)

\[g(\phi X, \phi Y) = g(X, Y) + \eta(X) \eta(Y), \]
(3.11)

\[\eta(R(X, Y)Z) = (\alpha^2 - \rho)(g(Y, Z)\eta(X) - g(X, Z)\eta(Y)), \]
(3.12)

\[S(X, \xi) = (\alpha^2 - \rho)(n - 1) \eta(X), \]
(3.13)

for any vector fields \(X, Y, Z \) on \(M \) and \(\alpha^2 - \rho \neq 0 \), where \(R \)-curvature tensor and \(S \)-Ricci tensor of the manifold.

In an \((LCS)_n\)-manifold, we also have the following results
\[(\nabla_X \eta)(Y) = (\nabla_Y \eta)(X), \]
(3.14)

\[d\eta(X, Y) = 0. \]
(3.15)

We also mention that, in an \((LCS)_n\)-manifold the symmetric (1,1) tensor field \(\phi \) is idempotent and hence the eigen value of \(\phi \) is either 1 or 0.

IV. INARIANT SUBMANIFOLDS OF \((LCS)_n\)-MANIFOLD ADMITTING SEMI-SYMMETRIC METRIC CONNECTION

If \(\tilde{M} \) is a \((LCS)_n\)-manifold with structure tensors \((\tilde{\phi}, \tilde{\xi}, \tilde{\eta}, \tilde{\varphi})\) then we know that its invariant submanifold \(M \) has the induced \((LCS)_n\)-structure \((\phi, \xi, \eta, \varphi)\).

A submanifold \(M \) of a \((LCS)_n\)-manifold \(\tilde{M} \) with a semi-symmetric metric connection is called an invariant submanifold of \(\tilde{M} \) with a semi-symmetric connection, if for each \(x \in M, \phi(T_x M) \subset T_x M \). The study of such submanifolds for the different type of contact manifolds have been carried out by authors of [4, 12, 26-], [29], [33, 37].

As a consequence, \(\xi \) becomes tangent to \(M \). For an invariant submanifold of a \((LCS)_n\)-manifold with a semi-symmetric metric connection, We have
\[\sigma(X, \xi) = 0, \]
(4.1)

for any vector \(X \) tangent to \(M \).

Let \(\tilde{M} \) be a \((LCS)_n\)-manifold admitting a semi-symmetric metric connection \(\tilde{\nabla} \cdot \)

Lemma 4.1. Let \(M \) be an invariant submanifold of contact metric manifold \(\tilde{M} \) which admits semi-symmetric connection \(\tilde{\nabla} \) and let \(\sigma \) and \(\tilde{\sigma} \) be the second fundamental form with respect to Levi-Civita connection and semi-symmetric metric connection then
(a) \(M \) admits semi-symmetric metric connection,
(b) the second fundamental form with respect to \(\tilde{\nabla} \) and \(\tilde{\nabla} \) are equal.

Proof. : we know that the contact metric structure \((\tilde{\phi}, \tilde{\xi}, \tilde{\eta}, \tilde{\varphi})\) on \(\tilde{M} \) induces \((\phi, \xi, \eta, \varphi)\) on invariant submanifold. By virtue of (1.1), we get
\[\tilde{\nabla}_X Y = \nabla_X Y + \eta(Y) X - g(X, Y) \xi. \]
(4.2)

By using (2.1) in (4.2)
\[\tilde{\nabla}_X Y = \nabla_X Y + \sigma(X, Y) + \eta(Y) X - g(X, Y) \xi. \]
(4.3)

Now gauss formula (2.1) with respect to semi-symmetric metric connection is given by
\[\tilde{\nabla}_X Y = \nabla_X Y + \tilde{\sigma}(X, Y). \]
(4.4)

Equating (4.3) and (4.4), we get (1.1)
\[\tilde{\sigma}(X, Y) = \sigma(X, Y). \]
(4.5)

V. RECURRENT INARIANT SUBMANIFOLDS OF \((LCS)_n\)-MANIFOLD ADMITTING SEMI-SYMMETRIC METRIC CONNECTION

We consider invariant submanifolds of a \((LCS)_n\)-manifold when \(\sigma \) is recurrent, 2-recurrent, generalized 2-recurrent and \(M \) has parallel third fundamental form with respect to semi-symmetric metric connection. We write the equations (2.4) and (2.5) with respect to semi-symmetric metric connection in the form
\[\tilde{\nabla}_{X \sigma}(Y, Z) = \nabla_{\tilde{\nabla}X}(\sigma(Y, Z)) - \sigma(\nabla_X Y, Z) - \sigma(Y, \tilde{\nabla}_X Z), \]
(5.1)

\[\tilde{\nabla}_{X \tilde{\varphi}}(Z, W, X, Y) = (\tilde{\nabla}_X \tilde{\varphi})(\sigma)(Z, W) = \tilde{\nabla}_{\tilde{\varphi}}(\tilde{\nabla}_X \sigma)(Z, W) - \tilde{\nabla}_{\tilde{\varphi}}(\tilde{\nabla}_{\tilde{\varphi}}\sigma)(Z, W). \]
(5.2)

Theorem 5.1. Let \(M \) be an invariant submanifold of \((LCS)_n\)-manifold admitting semi-symmetric metric connection. Then \(\sigma \) is recurrent with respect to semi-symmetric metric connection if and only if it is totally geodesic with respect to Levi-Civita connection.
Proof. Let \(\sigma \) be recurrent with respect to semi-symmetric metric connection. Then from (1.3) we get
\[
(\overline{\nabla}_X \sigma)(Y, Z) = \phi(X) \sigma(Y, Z),
\]
where \(\phi \) is a 1-form on \(M \). By using (5.1) and put \(Z = \xi \) in the above equation, we have
\[
\overline{\nabla}_X^\perp (\sigma(Y, Z) - \sigma(\overline{\nabla}_X Z, \overline{\nabla}_Y \xi)) = \phi(X) \sigma(Y, Z),
\]
which by virtue of (4.1) reduces to
\[
-\sigma(\overline{\nabla}_X Y, \xi) - \sigma(Y, \overline{\nabla}_X \xi) = 0. \tag{5.4}
\]
Using (1.1), (3.7), (3.10) and (4.1) in (5.4)
\[
-\alpha \sigma(Y, \phi X) + \sigma(Y, X) = 0. \tag{5.5}
\]
ow replace \(X \) by \(\phi X \) and by virtue of (3.10), (4.1) in (5.5), we get
\[
(1 - \alpha) \sigma(Y, X) = 0. \tag{5.6}
\]
We get \(\sigma(X, Y) = 0 \), if \(\alpha \neq 1 \) Therefore \(M \) is totally geodesic provided \(\alpha \neq 1 \)

Theorem 5.2. Let \(M \) be an invariant submanifold of a (LCS)-manifold \(\bar{M} \) admitting semi-symmetric metric connection. Then \(M \) has parallel third fundamental form with respect to semi-symmetric metric connection if and only if it is totally geodesic with respect to Levi-Civita connection.

Proof. Let \(M \) has parallel third fundamental form with respect to semi-symmetric metric connection. then we have
\[
(\overline{\nabla}_X \overline{\nabla}_Y \sigma)(Z, W) = 0
\]
Taking \(W = \xi \) and using (5.2) in the above equation, we have
\[
\overline{\nabla}_X \left(\left(\overline{\nabla}_Y \sigma(\xi, Z) \right) - \left(\overline{\nabla}_Y \sigma(Z, \xi) \right) - \left(\overline{\nabla}_X \sigma(Z, \xi) \right) \right) = 0. \tag{5.7}
\]
\[
0 = \overline{\nabla}_X^\perp \sigma(\overline{\nabla}_X Z, \xi) + \sigma(Z, \overline{\nabla}_X \xi) - \overline{\nabla}_Y^\perp \sigma(\overline{\nabla}_Y Z, \xi) + \sigma(\overline{\nabla}_Y Z, \overline{\nabla}_X \xi) + 2\sigma(\overline{\nabla}_X Z, \overline{\nabla}_Y \xi) + \sigma(\overline{\nabla}_X Z, \overline{\nabla}_Y \xi) + \sigma(Z, \overline{\nabla}_X \overline{\nabla}_Y \xi). \tag{5.8}
\]
In view of (1.1), (3.7), (3.10) and (4.1) in (5.8) gives
\[
0 = -2\overline{\nabla}_X^\perp \sigma(Z, \alpha \phi Y) + 2\overline{\nabla}_X^\perp \sigma(Z, Y) + \sigma(Z, \overline{\nabla}_X \alpha \phi Y) - \sigma(Z, \overline{\nabla}_X \alpha Y) \xi + \alpha \sigma(Z, \phi \overline{\nabla}_X Y) + \alpha \sigma(Y) \sigma(Z, \phi X) + \alpha \sigma(\overline{\nabla}_X Z, \phi Y) - \alpha \sigma(\overline{\nabla}_X \phi Y) + 2\alpha \sigma(\overline{\nabla}_X Z, \phi Y) - 2\sigma(\overline{\nabla}_X Z, \overline{\nabla}_Y \phi Y) - 2\eta(\overline{\nabla}_X Y) + 2\eta(\overline{\nabla}_X Z, \overline{\nabla}_Y \phi Y) - 2\eta(\overline{\nabla}_X \phi Y) \sigma(X, Y). \tag{5.9}
\]
Put \(Y = \xi \) and using (3.7), (3.10) and (4.1) in (5.9), we get
\[
0 = (\alpha^2 + 1)\sigma(Z, X) - 2\sigma(\phi, \phi X). \tag{5.10}
\]
Multiply by \((\alpha^2 + 1) \) in (5.10), we get
\[
0 = (\alpha^2 + 1)^2 \sigma(Z, X) - 2\alpha(\alpha^2 + 1)\sigma(Z, \phi X). \tag{5.11}
\]
Put \(X = \phi X \) in (5.11), we get
\[
0 = (\alpha^2 + 1)\sigma(Z, \phi X) - 2\alpha(\alpha^2 + 1)\sigma(Z, \phi X). \tag{5.12}
\]
Multiply by \(2\alpha \) in (5.12), we get
\[
0 = 2\alpha(\alpha^2 + 1)\sigma(Z, \phi X) - 4\alpha^2\sigma(Z, X). \tag{5.13}
\]
Adding equation (5.11) and (5.13), we get \(\alpha = \pm 1 \) and \(\sigma(X, Z) = 0 \). Thus \(M \) is totally geodesic. The converse statement is trivial. This proves the theorem

Corollary 5.1. Let \(M \) be an invariant submanifold of a (LCS)-manifold \(\bar{M} \) admitting semi-symmetric metric connection. Then \(\sigma \) is 2-recurrent with respect to semi-symmetric metric connection if and only if it is totally geodesic with respect to Levi-Civita connection.

Proof. Let \(\sigma \) be 2-recurrent with respect to semi-symmetric metric connection. From (1.5), we have
\[
(\overline{\nabla}_X \overline{\nabla}_Y \sigma)(Z, \xi) = 0
\]
Taking \(W = \xi \) and using (5.2) in the above equation, we have
\[
\overline{\nabla}_X \left(\left(\overline{\nabla}_Y \sigma(Z, \xi) \right) - \left(\overline{\nabla}_Y \sigma(Z, \xi) \right) - \left(\overline{\nabla}_X \sigma(Z, \xi) \right) \right) = 0. \tag{5.14}
\]
In view of (4.1) and (5.1) we write (5.14) in the form
\[
0 = \overline{\nabla}_X \left(\sigma(\overline{\nabla}_Y Z, \xi) + \sigma(\overline{\nabla}_Y Z, \xi) - \sigma(\overline{\nabla}_X Z, \xi) \right) + \sigma(\overline{\nabla}_X Z, \overline{\nabla}_Y \xi) + 2\sigma(\overline{\nabla}_X Z, \overline{\nabla}_Y \xi) + \sigma(\overline{\nabla}_X Z, \overline{\nabla}_Y \xi) + \sigma(\overline{\nabla}_X Z, \overline{\nabla}_Y \xi).
\]
(5.15)
Using (1.1), (3.7), (3.10) and (4.1) in (5.15), we get
\[
0 = -2\overline{\nabla}_X^\perp \sigma(Z, \alpha \phi Y) + 2\overline{\nabla}_X^\perp \sigma(Z, Y) + \sigma(Z, \overline{\nabla}_Y \alpha \phi Y) - \sigma(Z, \overline{\nabla}_Y \alpha Y) \xi + \alpha \sigma(Z, \phi \overline{\nabla}_X Y) + \alpha \sigma(Y) \sigma(Z, \phi X) + \alpha \sigma(\overline{\nabla}_X Z, \phi Y) - \alpha \sigma(\overline{\nabla}_X \phi Y) + 2\alpha \sigma(\overline{\nabla}_X Z, \overline{\nabla}_Y \phi Y) - 2\sigma(\overline{\nabla}_X Z, \overline{\nabla}_Y \phi Y) - 2\eta(\overline{\nabla}_X Y) + 2\eta(\overline{\nabla}_X Z, \overline{\nabla}_Y \phi Y) - 2\eta(\overline{\nabla}_X \phi Y) \sigma(X, Y).
\]
(5.16)
Put \(Y = \xi \) and using (3.7), (3.10) and (4.1) in (5.16), we get
\[
0 = (\alpha^2 + 1)\sigma(Z, X) - 2\alpha(\alpha^2 + 1)\sigma(Z, \phi X).
\]
Multiply by \((\alpha^2 + 1) \) in (5.17), we get
\[
0 = (\alpha^2 + 1)^2 \sigma(Z, X) - 2\alpha(\alpha^2 + 1)\sigma(Z, \phi X).
\]
(5.18)
Put \(X = \phi X \) in (5.17), we get
\[
0 = (\alpha^2 + 1)\sigma(Z, \phi X) - 2\alpha(\alpha^2 + 1)\sigma(Z, \phi X).
\]
(5.19)
Multiply by \(2\alpha \) in (5.19), we get
\[
0 = 2\alpha(\alpha^2 + 1)\sigma(Z, \phi X) - 4\alpha^2\sigma(Z, X).
\]
(5.20)
Adding equation (5.18) and (5.20), we get $\alpha \neq \pm 1$ and $\sigma(X, Z) = 0$. Thus M is totally geodesic. The converse statement is trivial. This proves the theorem.

Theorem 5.3. Let M be an invariant submanifold of a (LCS)-manifold \tilde{M} admitting semi-symmetric metric connection. Then σ is generalised 2-recurrent with respect to semi-symmetric metric connection if and only if it is totally geodesic with respect to Levi-Civita connection.

Proof. Let σ be a generalised 2-recurrent with respect to semi-symmetric metric connection. From (1.7), we have

$$\tilde{\nabla}_\psi \tilde{\nabla}_\phi \sigma(Z, W) = \psi(X, Y) \sigma(Z, W) + \phi(X)(\tilde{\nabla}_\psi \sigma)(Z, W).$$

(5.21)

Where ψ and ϕ are 2-recurrent and 1-form respectively. Taking $W = \xi$ in (5.21) and using (4.1), we get

$$\tilde{\nabla}_\psi \tilde{\nabla}_\phi \sigma(Z, \xi) = \phi(X)(\tilde{\nabla}_\psi \sigma)(Z, \xi).$$

Using (4.1), (5.1) and (5.2) in above equation, we get

$$\tilde{\nabla}_\psi \tilde{\nabla}_\phi \sigma(Z, \xi) - \tilde{\nabla}_\phi \sigma(\tilde{\nabla}_\psi \sigma)(Z, \xi) - \tilde{\nabla}_\psi \sigma(\tilde{\nabla}_\phi \sigma)(Z, \xi) = \phi(X)\sigma(\tilde{\nabla}_\psi Z, \xi) + \sigma(Z, \tilde{\nabla}_\phi \xi).$$

(5.22)

By using (4.1) and the virtue of (5.1), we write (5.22) in the form

$$\tilde{\nabla}_\psi \sigma(\tilde{\nabla}_\phi Z, \xi) + \sigma(\tilde{\nabla}_\phi \xi) = \tilde{\nabla}_\phi \sigma(\tilde{\nabla}_\psi Z, \xi) + 2\sigma(\tilde{\nabla}_\psi Z, \tilde{\nabla}_\phi \xi) - \tilde{\nabla}_\phi \sigma(\tilde{\nabla}_\psi Z, \tilde{\nabla}_\phi \xi) + \sigma(Z, \tilde{\nabla}_\psi Z, \tilde{\nabla}_\phi \xi) + \sigma(\tilde{\nabla}_\psi Z, \tilde{\nabla}_\phi \xi) - \sigma(Z, \tilde{\nabla}_\psi \tilde{\nabla}_\phi \xi) = \phi(X)\sigma(\tilde{\nabla}_\psi Z, \xi) + \sigma(Z, \tilde{\nabla}_\phi \xi).$$

(5.23)

In view of (1.1), (3.7), (3.10) and (4.1) in (5.23), we get

$$-2\tilde{\nabla}_\psi \sigma(\tilde{\nabla}_\phi Z, \xi) + 2\tilde{\nabla}_\phi \sigma(\tilde{\nabla}_\psi Z, \xi) + \sigma(\tilde{\nabla}_\phi \xi) - \sigma(Z, \tilde{\nabla}_\phi \xi) + \sigma(\tilde{\nabla}_\psi Z, \tilde{\nabla}_\phi \xi) + \sigma(Z, \tilde{\nabla}_\psi \tilde{\nabla}_\phi \xi) = \phi(X)\sigma(\tilde{\nabla}_\psi Z, \xi) + \sigma(Z, \tilde{\nabla}_\phi \xi).$$

(5.24)

Put $Y = \xi$ and using (3.7), (3.10) and (4.1) in (5.24), we get

$$0 = (\alpha^2 + 1)\sigma(X, Z) - 2\sigma(\tilde{\nabla}_\phi Z, \tilde{\nabla}_\phi X).$$

(5.25)

Multiply by $(\alpha^2 + 1)$ in (5.25), we get

$$0 = (\alpha^2 + 1)^2\sigma(X, Z) - 2\alpha(\alpha^2 + 1)\sigma(Z, \tilde{\nabla}_\phi X).$$

(5.26)

Put $X = \tilde{\nabla}_\phi X$ in (5.25), we get

$$0 = (\alpha^2 + 1)(\sigma(Z, X) - 2\sigma(\tilde{\nabla}_\phi Z, \tilde{\nabla}_\phi X)).$$

(5.27)

Multiply by 2α in (5.27), we get

$$0 = 2\alpha(\alpha^2 + 1)\sigma(Z, \tilde{\nabla}_\phi X) - 4\alpha^2\sigma(Z, X).$$

(5.28)

Adding equation (5.26) and (5.28), we get $\alpha \neq \pm 1$ and $\sigma(X, Z) = 0$. Thus M is totally geodesic. The converse statement is trivial. This proves the theorem.

VI. CONCLUSION

From the Theorems (5.1), (5.2) and (5.3) and from the Corollary (5.1), we conclude that:

If M is an invariant submanifolds of LCS manifold admitting semi-symmetric metric connection then the following conditions are equivalent:

i. The submanifold M is totally geodesic with respect to the Levi-Civita connection;

ii. Second fundamental form σ is recurrent with respect to semi-symmetric metric connection;

iii. The submanifold M has parallel third fundamental form with respect to semi-symmetric metric connection;

iv. Second fundamental form σ is 2-recurrent with respect to semi-symmetric metric connection;

v. Second fundamental form σ is generalised 2-recurrent with respect to semi-symmetric metric connection.

REFERENCES

